GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Chickens as laboratory animals-Laboratory manuals. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9783662044889
    Series Statement: Springer Lab Manuals Series
    DDC: 616.07979999999998
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9783540378853
    DDC: 664.93
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Immunoglobulins. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (316 pages)
    Edition: 1st ed.
    ISBN: 9783030726881
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Funding Acknowledgements -- Contents -- Contributors -- Part I: Biological Basis of IgY Technology -- 1: Development of IgY Technology: A Historical Perspective -- 1.1 Introduction -- 1.2 Development of IgY Technology -- 1.3 Application of IgY Products at a Glance -- 1.4 Application of the IgY Technology Driven by Legal Regulations in Favour of Animal Protection -- 1.5 Advantages and Limitations Driving IgY Technology -- References -- 2: The Domestic Hen -- 2.1 Introduction -- 2.2 Genetic Selection for Domestic Breeds of Chicken -- 2.3 Breeds of Chicken -- 2.4 Physiology of Chickens -- 2.4.1 Body Temperature -- 2.4.2 Anatomical Structures -- 2.4.3 Crop -- 2.4.4 Cloacal Chamber -- 2.4.5 Medullary Bone -- 2.5 Immune System of the Hen -- 2.5.1 Immune Tissues -- 2.5.1.1 Thymus and Bursa of Fabricius -- 2.5.1.2 Spleen -- 2.5.1.3 Defence System in the Reproductive Organs -- 2.5.1.4 Immune Response -- 2.6 Development of the Reproductive System and Egg Laying -- 2.6.1 Embryology of the Chicken -- 2.6.2 The Ovary -- 2.6.2.1 Follicular Development and Oocyte Maturation -- 2.6.3 Initiation of Laying -- 2.6.4 Reproductive System of the Hen -- 2.6.4.1 Egg Laying and the Oviduct -- 2.7 The Egg -- 2.7.1 Structure of Eggs -- 2.7.2 Composition of Egg Yolk -- 2.8 Concluding Remarks -- References -- 3: Immune Response in Mammals and Chickens -- 3.1 Evolutionary Context -- 3.2 Innate and Adaptive Immune Response -- 3.3 Innate Immune Response in Mammals and Chickens -- 3.3.1 Toll Like Receptors (TLRs) -- 3.3.2 Cytokine Production and Host Defence Peptides -- 3.4 Adaptive Immune Response -- 3.4.1 Lymphoid Tissues in Mammals and Chickens -- 3.4.2 B Cells, T Cells and MHC Class II Proteins -- 3.4.3 Antibody Secretion by B Cells -- 3.5 Genetic Basis for Diversity in Mammalian TCR and Immunoglobulins. , 3.6 Genetic Basis for Diversity in Chicken TCR and Immunoglobulins -- 3.7 Structure of IgG and IgY -- References -- 4: Evolution of Immunoglobulins in Vertebrates -- 4.1 Introduction to Evolution -- 4.2 Immunoglobulin Classes in Vertebrates -- 4.3 Central Position of IgY in Antibody Evolution -- 4.4 Gene Organisation Related to Ig Evolution -- 4.5 Recombination-Activating Gene (RAG)-Mediated Rearrangement -- 4.6 Patterns of V(D)J Rearrangement -- References -- 5: Biology and Molecular Structure of Avian IgY Antibody -- 5.1 The Biology of IgY Production Compared to IgG -- 5.2 Molecular Structure of IgY -- 5.3 Generation of Immunoglobulin Diversity -- 5.4 Differential Expression of IgY Across Species -- 5.5 Generation of IgY(DeltaFc) -- References -- 6: IgY Cell Receptors and Immunity Transfer -- 6.1 Constant Region of Immunoglobulins (Ig) -- 6.2 Transfer of Maternal Immunoglobulins -- 6.3 Transfer of IgY -- 6.3.1 Transfer from the Maternal Circulation to the Yolk of the Oocytes -- 6.3.2 Transfer from the Embryonic Yolk Sac to the Embryonic Blood Stream -- 6.4 IgY Receptor Family -- 6.5 Prospective -- References -- 7: Biorhythms of Hens -- 7.1 Introduction -- 7.2 Observed Rhythms in Hens -- 7.3 Impact of Ageing -- References -- Part II: Core Methods of IgY Technology -- 8: Keeping Laying Hens to Obtain Antibodies -- 8.1 General Introduction -- 8.2 Legislation -- 8.3 Climate, Air Quality, Light and Noise -- 8.4 Enrichment and Nourishment -- 8.4.1 Nest Box -- 8.4.2 Perches -- 8.4.3 Flooring -- 8.4.4 Food and Water -- 8.5 Factors Impacting on IgY Production -- 8.6 Example of a Conventional Housing System -- 8.7 Specific Pathogen Free (SPF) Hens -- 8.8 Specific Pathogen Free (SPF) Avian Facility -- References -- 9: Other Avian Species: Ostrich, Quail, Turkey, Duck and Goose -- 9.1 Introduction -- 9.2 Ostrich Struthio camelus. , 9.3 Japanese Quail Coturnix japonica -- 9.4 Turkey Meleagris gallopavo -- 9.5 Duck Anas platyrhynchos -- 9.6 Goose Anser anser -- 9.7 Summary -- References -- 10: Immunization of Hens -- 10.1 Maintenance of Hens -- 10.2 Source of Antigens -- 10.2.1 Whole Virus or Bacteria -- 10.2.2 Recombinant Proteins -- 10.2.3 Haptens -- 10.2.4 Virus-Like Particles -- 10.2.5 Bacterial Ghosts -- 10.2.6 Virosomes -- 10.2.7 Nucleic Acid Vaccines as Immunogens -- 10.2.8 Vaccine Products as Antigens -- 10.3 Routes of Administration -- 10.4 Amount of Antigen -- 10.5 Adjuvant -- 10.6 Immunization Intervals -- 10.7 Monitoring the IgY Titre -- 10.8 Immunization for the Generation of IgY-scFv -- 10.9 Discussion -- References -- 11: Extraction and Purification of IgY -- 11.1 Introduction -- 11.1.1 Properties of IgY -- 11.1.2 General Considerations for the Extraction of IgY -- 11.2 Egg Collection and Separation of Yolk from Egg White -- 11.3 Delipidation of Egg Yolk -- 11.3.1 Water Dilution -- 11.3.2 Polyethylene Glycol Precipitation -- 11.3.3 Anionic Polysaccharides -- 11.3.4 Organic Solvents -- 11.3.5 Specific Chemicals -- 11.4 Extraction of IgY Following Delipidation -- 11.4.1 Salt Precipitation -- 11.4.2 PEG Precipitation -- 11.4.3 Filtration -- 11.4.4 Aqueous Biphasic Systems (ABS) -- 11.5 Purification of IgY -- 11.5.1 Cation Exchange Chromatography -- 11.5.2 Hydrophobic Charge-Induction Chromatography -- 11.5.3 Affinity Chromatography -- 11.6 Comparison of Methods Used for Delipidation and Extraction of IgY -- 11.7 Commercially Available IgY Extraction Kits -- 11.8 Methods Used to Confirm Purity and Activity of IgY -- 11.8.1 Molecular Weight and Structure -- 11.8.2 Biological Activity of IgY -- 11.9 Purification and Characterization of Monoclonal IgY -- 11.10 The Storage and Stability of IgY Product -- References -- 12: IgY Delivery and Dosage Form -- 12.1 Introduction. , 12.2 Oral Administrations -- 12.3 Parenteral Administrations -- 12.4 IgY in Food and Feed Use -- 12.5 Perspective -- References -- 13: Monoclonal IgY Antibodies -- 13.1 Introduction -- 13.1.1 Monoclonal Antibody and Functional Antibody Fragments -- 13.2 Genetically Engineered Chicken Antibodies -- 13.2.1 Recombinant IgY Fragments -- 13.2.2 Chimeric Antibodies -- 13.2.3 Humanized Antibody -- 13.3 Biomolecular Methods for Monoclonal IgY Generation -- 13.3.1 Hybridoma Technology -- 13.3.2 DT40 Cell Line -- 13.3.3 Antibody Display Technologies -- 13.3.3.1 Phage Display -- 13.3.3.2 Yeast Surface Display -- 13.3.3.3 Ribosomal Display -- 13.3.4 Gel Encapsulated Microenvironment (GEM) Screening Technology -- 13.4 Amino-Acid Synthetic for Monoclonal IgY Generation Antibody Mimetics -- 13.5 Conclusion and Future Prospect -- References -- 14: Protein Production in Transgenic Chickens -- 14.1 Introduction -- 14.2 Protein Production Methods -- 14.3 Advantages of Protein Production in Chicken Egg White -- 14.4 Overview of Chicken Transgenesis -- 14.4.1 Evolution of Delivery Methods and Germline Transmission Frequencies -- 14.4.2 The Effects of Promoters in Protein Expression -- 14.5 Closing Remarks -- References -- Part III: Applications of IgY Technology -- 15: Applications of IgY in Veterinary Medicine -- 15.1 Introduction -- 15.2 Cattle -- 15.2.1 Diarrhoea in Calves -- 15.2.2 Bovine Viral Diarrhoea Virus (BVDV): Prevention and Treatment -- 15.2.3 Mastitis -- 15.3 Pigs -- 15.3.1 Diarrhoea in Pigs -- 15.4 Poultry -- 15.4.1 IgY Treatment of Bacterial Infections of Poultry -- 15.4.2 IgY Treatment of Viral Infections of Poultry -- 15.4.3 IgY Treatment of Protozoan Infections of Poultry -- 15.5 Applications of IgY in Aquaculture -- 15.6 Dogs -- 15.6.1 Canine Parvovirus -- 15.6.2 Canine Morbillivirus -- 15.7 Applications of IgY to Treat Other Animals. , 15.8 Application of IgY Antibodies in Detection and Immunoassay -- 15.8.1 Igy Based Diagnostics of Animal Diseases -- 15.8.2 IgY for Detection of Microbial Contamination in Sea Food -- 15.9 Conclusion and Perspectives -- References -- 16: Applications of IgY in Human Medicine -- 16.1 Introduction -- 16.2 Human Respiratory Infections -- 16.2.1 Severe Acute Respiratory Syndrome Coronaviruses (SARS-CoV) -- 16.2.2 Influenza -- 16.2.3 Hantavirus Pulmonary Syndrome -- 16.2.4 Pseudomonas aeruginosa -- 16.3 Other Human Viral Infections -- 16.3.1 Rabies Virus -- 16.3.2 Emerging Viral Threats -- 16.4 Helicobacter pylori and Gastric Pathogenesis -- 16.5 Mutans Streptococci and Dental Caries -- 16.5.1 Introduction -- 16.5.2 Vaccination Against Dental Caries -- 16.5.3 Passive Immunization -- 16.6 Antitoxin IgY Therapies and Approaches -- 16.6.1 Introduction -- 16.6.2 Escherichia coli -- 16.6.3 Clostridium tetani -- 16.6.4 Clostridium botulinum -- 16.6.5 Clostridium difficile -- 16.6.6 Clostridium perfringens -- 16.6.7 Staphylococcus aureus -- 16.7 Antivenoms -- 16.7.1 Snake Venom -- 16.7.2 Clinical Manifestations of Envenoming -- 16.7.3 IgY Antivenoms: the Key Therapy for Snakebite Envenoming -- 16.7.4 Pharmacological Characterization and Neutralization of Venoms -- References -- 17: IgY Industries and Markets -- 17.1 Introduction -- 17.2 Case-studies of IgY Companies -- 17.2.1 Gentian AS (Moss, Norway) -- 17.2.2 Immunsystem AB (Uppsala, Sweden) -- 17.2.3 Bioinnovo (Castelar, Argentina) -- 17.2.4 Crystal Biosciences (California, USA) -- 17.2.5 Ovagen Group Ltd. -- 17.2.6 ADBioTech (South Korea) -- 17.3 Brief Profiles of Other IgY Companies -- 17.3.1 EW Nutrition (Visbek, Germany) -- 17.3.2 Avianax (North Dakota, USA) -- 17.3.3 IGY Life Sciences (Ontario, Canada) -- 17.3.4 Ostrich Pharma Corp (Kyoto, Japan) -- 17.4 Intellectual Property of IgY. , 17.4.1 IgY: Patenting a Product Already Existing in Nature.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Inflammation research 19 (1986), S. 335-336 
    ISSN: 1420-908X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Conclusion Local low dose injection of actinomycin D into the inflamed tissue as well as administration of a glucocorticoid antagonist is apparently suitable for investigating the regulation of acute phase reactionin vivo. The acute phase protein synthesis in the liver is apparently triggered by several factors derived from the inflamed tissue, not only by one substance (IL-1).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4978
    Keywords: COP9 signalosome ; 26S proteasome ; 19S regulator ; JNK ; curcumin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The human core COP9 signalosome consists of eight subunits which have been identified, cloned and sequenced. The components of COP9 signalosome possess homologies with eight non-ATPase regulatory subunits of the 26S proteasome. These polypeptides of the 19S regulator form a reversibly binding subcomplex called the ‘lid’. We isolated the ‘lid’ from human red blood cells and compared it with the COP9 signalosome complex. In addition to the non-ATPase regulatory polypeptides, we found a high molecular mass ATPase copurifying with the human ‘lid’. The COP9 signalosome-associated kinase activity is either not at all or only weakly affected by common kinase inhibitors such as 1-(5-Isoquinolinesulfonyl)-2-methyl-piperazine (H7), 5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB) or Wortmannin. Curcumin, a tumor suppressor and effector of AP-1 activation, is a potent inhibitor of the COP9 signalosome kinase activity with a Ki of about 10 μM. Since curcumin is known as an inhibitor of the c-Jun N-terminal kinase (JNK) signaling pathway acting upstream of the MAP kinase kinase kinase level, one site of action of the COP9 signalosome might be proximal to regulators on that level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...