GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 55, No. 5 ( 2023-05), p. 753-767
    Abstract: Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of 〉 895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell–cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_7 ( 2022-11-14), p. vii103-vii103
    Abstract: Pediatric high-grade glioma (pHGG) is an incurable disease with a median survival of less than 6 months post-progression and no effective targeted therapy. PDGFRA is commonly altered in pHGG, but targeting PDGFRA in this disease has been unsuccessful, likely due to poor central nervous system (CNS) penetrance. Avapritinib is a novel and CNS-penetrant PDGFRA/KIT inhibitor that is FDA-approved for adults with unresectable or metastatic PDGFRA exon 18-mutant gastrointestinal stromal tumor (GIST) and is being studied in CNS tumors. We performed a pre-clinical and clinical assessment to determine the potential suitability of avapritinib therapy in PDGFRA-driven glioma. A multi-institutional cohort genetic analysis revealed PDGFRA amplification and mutation in 10.2% and 6.1% of pHGG, respectively. Additionally, PDGFRA expression in the absence of genetic events was significantly increased in H3K27-altered diffuse midline glioma (DMG) compared to H3-wildtype pHGG. Avapritinib performed well in: (i) mutant PDGFRA enzyme inhibition and wildtype inhibition at high dose, (ii) minimal off-target kinase inhibition, (iii) brain penetration (peak 10 µM), and (iv) proliferation/pPDGFRA reduction in PDGFRA-amplified and mutant pHGG cell lines. Avapritinib treatment in an aggressive PDX model of pHGG resulted in significant survival benefit. We pursued treatment of eight pediatric and young adult HGG patients with avapritinib across seven institutions. Patients were a mixture of local (N = 4) and metastatic disease (N = 4); all patients were post-initial radiation, with 7/8 having progressed on prior treatment. 7/8 patients had PDGFRA amplifications or mutations, and 7/8 had H3K27M mutations. Therapy was generally well-tolerated. 4/8 patients showed radiographic response to avapritinib, with one patient demonstrating complete response of target lesion and remains on therapy. Avapritinib levels in patients’ CSF and brain tumor tissue reached micromolar levels. These results demonstrate that avapritinib is a potent, selective, and CNS-penetrant PDGFRA/KIT inhibitor that is promising for further study in pHGG with relevant alterations.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 609, No. 7928 ( 2022-09-22), p. 754-760
    Abstract: Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge 1–5 . Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene ( DOCK2 ), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis ( n  = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6609 ( 2022-08-26), p. 940-951
    Abstract: Polities of the ancient Mediterranean world preserved contrasts of ancestry since the Bronze Age but were linked by migration.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6609 ( 2022-08-26), p. 982-987
    Abstract: Two pulses of migration appear to have contributed to the early farmers of Anatolia.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2023
    In:  Clinical Cancer Research Vol. 29, No. 18_Supplement ( 2023-09-15), p. PO-026-PO-026
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 29, No. 18_Supplement ( 2023-09-15), p. PO-026-PO-026
    Abstract: Human papillomavirus (HPV) integration has been considered as one of the driver factors for cancer progression, but its pattern and role in carcinogenesis is still unclear. Whole genome sequencing data of 14 Japanese HPV16+ OPSCC and 13 HPV+ OPSCC from Pan-Cancer Analysis of Whole Genomes were used to identify integrations and somatic mutations. The phylogenetic analysis of HPV16 revealed that in tumors of 14 Japanese subjects, the A4 variant was the most common (8/14, 57.1%), followed by the A5 variant (2/14, 14.3%), which is considered unique to HPV16 in East and Southeast Asian, and the A2/A3/D2/D3 variants (1/14, 7.1%), showing a significant difference from the distribution of the HPV16 sublineages in Europe and the United States, where the A1 variant accounts for half. A total of 250 integration breakpoints (BPs) in 20 of the 27 tumors (74.1%) were detected. We estimated the cancer cell fraction of integration BPs and found that HPV integration also shows intra-tumor heterogeneity, indicating that nearly half of the integration events occurred after carcinogenesis. Clonal BPs were more likely to occur in the E1 (P = 0.036), confirming that the disruption of the E1 gene may result in abnormal negative regulation of the E6/E7 oncogenes and promote OPSCC carcinogenesis. Subclonal BPs were less likely to occur in the E6 (P = 0.045), suggesting that the E6 may also play an important role in the process of cancer evolution after carcinogenesis. Four states of the HPV genome were identified: (1) episomal-only (7/27, 25.9%), (2) integrated-only (4/27, 14.8%), (3) clonally-mixed (episomal + clonally integrated) (11/27, 40.7%), and (4) subclonally-mixed (episomal + subclonally integrated) (5/27, 18.5%). Since nearly half of these cancers have developed with just episomal copies of HPV, integration itself is not essential for carcinogenesis and can occur during and after carcinogenesis. Interestingly, the E6/E7 were conserved in all four cancers with integrated-only HPV, while the E2 and E1 were disrupted or deleted. This confirms that the constitutive expression of E6/E7 is essential for the carcinogenesis of HPV+ OPSCC. These results suggest that some integrations may be drivers of carcinogenesis with disruption of E1/E2, as in these four cancers, and others may arise randomly due to genomic instability, as in the cancers with the E6/E7 deleted integrants. The number of BPs of structural variations (SVs) occurred in the overlapping 100 kb regions flanking integration BPs (ITG regions) was positively correlated with the number of integration BPs (Spearman’s rank correlation ρ = 0.78; Permutation test P = 9.9 × 10−5). The genomic instability that causes clonal integrations during carcinogenesis is considered to cause clonal SVs, mainly large duplications, and subclonal integrations and SVs such as large deletions. Clonal SVs, mainly large duplications, were also observed in the regions where only subclonal integrations occurred, suggesting that large duplications occur before integrations. Citation Format: Noah Sasa, Hirotaka Eguchi, Hidenori Tanaka, Takahito Fukusumi, Motoyuki Suzuki, Yukinori Takenaka, Yukinori Okada, Hidenori Inohara. Intra-tumor heterogeneity of HPV integration and its association with focal genomic instability in oropharyngeal cancer [abstract]. In: Proceedings of the AACR-AHNS Head and Neck Cancer Conference: Innovating through Basic, Clinical, and Translational Research; 2023 Jul 7-8; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2023;29(18_Suppl):Abstract nr PO-026.
    Type of Medium: Online Resource
    ISSN: 1557-3265
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-08-22)
    Abstract: Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1 ), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1 ), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2 ). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6609 ( 2022-08-26)
    Abstract: For thousands of years, humans moved across the “Southern Arc,” the area bridging Europe through Anatolia with West Asia. We report ancient DNA data from 727 individuals of this region over the past 11,000 years, which we co-analyzed with the published archaeogenetic record to understand the origins of its people. We focused on the Chalcolithic and Bronze Ages about 7000 to 3000 years ago, when Indo-European language speakers first appeared. RATIONALE Genetic data are relevant for understanding linguistic evolution because they can identify movement-driven opportunities for language spread. We investigated how the changing ancestral landscape of the Southern Arc, as reflected in DNA, corresponds to the structure inferred by linguistics, which links Anatolian (e.g., Hittite and Luwian) and Indo-European (e.g., Greek, Armenian, Latin, and Sanskrit) languages as twin daughters of a Proto-Indo-Anatolian language. RESULTS Steppe pastoralists of the Yamnaya culture initiated a chain of migrations linking Europe in the west to China and India in the East. Some people across the Balkans (about 5000 to 4500 years ago) traced almost all their genes to this expansion. Steppe migrants soon admixed with locals, creating a tapestry of diverse ancestry from which speakers of the Greek, Paleo-Balkan, and Albanian languages arose. The Yamnaya expansion also crossed the Caucasus, and by about 4000 years ago, Armenia had become an enclave of low but pervasive steppe ancestry in West Asia, where the patrilineal descendants of Yamnaya men, virtually extinct on the steppe, persisted. The Armenian language was born there, related to Indo-European languages of Europe such as Greek by their shared Yamnaya heritage. Neolithic Anatolians (in modern Turkey) were descended from both local hunter-gatherers and Eastern populations of the Caucasus, Mesopotamia, and the Levant. By about 6500 years ago and thereafter, Anatolians became more genetically homogeneous, a process driven by the flow of Eastern ancestry across the peninsula. Earlier forms of Anatolian and non–Indo-European languages such as Hattic and Hurrian were likely spoken by migrants and locals participating in this great mixture. Anatolia is remarkable for its lack of steppe ancestry down to the Bronze Age. The ancestry of the Yamnaya was, by contrast, only partly local; half of it was West Asian, from both the Caucasus and the more southern Anatolian-Levantine continuum. Migration into the steppe started by about 7000 years ago, making the later expansion of the Yamnaya into the Caucasus a return to the homeland of about half their ancestors. CONCLUSION All ancient Indo-European speakers can be traced back to the Yamnaya culture, whose southward expansions into the Southern Arc left a trace in the DNA of the Bronze Age people of the region. However, the link connecting the Proto-Indo-European–speaking Yamnaya with the speakers of Anatolian languages was in the highlands of West Asia, the ancestral region shared by both. Many partings, many meetings: How migration and admixture drove early language spread. Westward and northward migrations out of the West Asian highlands split the Proto-Indo-Anatolian language into Anatolian and Indo-European branches. Yamnaya pastoralists, formed on the steppe by a fusion of newcomers and locals, admixed again as they expanded far and wide, splitting the Proto-Indo-European language into its daughter languages across Eurasia. Border colors represent the ancestry and locations of five source populations before the migrations (arrows) and mixture (pie charts) documented here.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...