GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 124 (5). pp. 4399-4427.
    Publication Date: 2022-01-31
    Description: Free gas migration through the gas hydrate stability zone (GHSZ) and subsequent gas seepage at the seabed are characteristic features in marine gas hydrate provinces worldwide. The biogenic or thermogenic gas is typically transported along faults from deeper sediment strata to the GHSZ. Several mechanisms have been proposed to explain free gas transport through the GHSZ. While inhibition of hydrate formation by elevated salinities and temperatures have been addressed previously in studies simulating unfocused, area-wide upward advection of gas, which is not adequately supported by field observations, the role of focused gas flow through chimney-like structures has been underappreciated in this context. Our simulations suggest that gas migration through the GHSZ is, fundamentally, a result of methane gas supply in excess of its consumption by hydrate formation. The required high gas flux is driven by local overpressure, built up from gas accumulating below the base of the GHSZ that fractures the overburden when exceeding a critical pressure, thereby creating the chimney-like migration pathway. Initially rapid hydrate formation raises the temperature in the chimney structure, thereby facilitating further gas transport through the GHSZ. As a consequence, high hydrate saturations form preferentially close to the seafloor, where temperatures drop to bottom water values, producing a prominent subsurface salinity peak. Over time, hydrates form at a lower rate throughout the chimney structure, while initial temperature elevation and salinity peak dissipate. Thus, our simulations suggest that the near-surface salinity peak and elevated temperatures are a result of transient high-flux gas migration through the GHSZ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-05
    Description: We conducted two‐dimensional numerical simulations to investigate the mechanisms underlying the strong spatiotemporal correlation observed between submarine landslides and gas hydrate dissociation due to glacial sea‐level drops. Our results suggest that potential plastic deformation or slip could occur at localized and small scales in the shallow‐water portion of the gas hydrate stability zone (GHSZ). This shallow‐water portion of the GHSZ typically lies within the area enclosed by three points: the BGHSZ–seafloor intersection, the seafloor at ∼600 m below sea level (mbsl), and the base of the GHSZ (BGHSZ) at ∼1,050 mbsl in low‐latitude regions. The deep BGHSZ (〉1,050 mbsl) could not slip; therefore, the entire BGHSZ was not a complete slip surface. Glacial hydrate dissociation alone is unlikely to cause large‐scale submarine landslides. Observed deep‐water (much greater than 600 mbsl) turbidites containing geochemical evidence of glacial hydrate dissociation potentially formed from erosion or detachment in the GHSZ pinch‐out zone. Plain Language Summary Many submarine landslides spatiotemporally correlate with gas hydrate dissociation. However, direct mechanical evidence supporting whether the overpressure and deformation due to glacial sea‐level drop‐induced hydrate dissociation are adequate for triggering submarine landslides is lacking. Here, we present two‐dimensional thermal‐hydraulic‐chemical and geomechanical models of a gas‐hydrate system in response to glacial sea‐level drops and conduct sensitivity analyses of the model behavior under a wide range of key conditions from a global perspective. Our simulations suggest that glacial hydrate dissociation might induce plastic deformation or slip at localized and small scales only possibly within the shallow‐water portion of the hydrate stability zone. The deep part (〉1,050 m below sea level) of the bottom boundary of the hydrate stability zone could not slip; therefore, the entire bottom boundary of the hydrate stability zone was not a complete slip surface. We demonstrate that glacial hydrate dissociation alone is unlikely to trigger large‐scale submarine landslides. Our work highlights the vicinity of the upper limit of the hydrate stability zone (where the base of the hydrate stability zone intersects the seafloor) as an important area for investigating overpressure and focused fluid flow, localized plastic deformation or slip, and downslope sediment transport related to glacial hydrate dissociation. Key Points Glacial hydrate dissociation might cause potential plastic deformation or slip at localized and small scales in shallow parts of the GHSZ The large deformation surface at the BGHSZ boundary of the potential plastic deformation zone was not a complete slip surface Glacial sea‐level drop‐induced gas hydrate dissociation alone is unlikely to have caused large‐scale submarine landslides
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...