GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-03
    Description: The purpose of the guidelines is to review existing knowledge and provide guidance for designing an Arctic monitoring program that will track litter and MP. The topics of litter, plastic pollution, and MP are addressed in many fora, including several of the Arctic Council working groups: Arctic Monitoring and Assessment Programme (AMAP; https://www.amap.no/documents/doc/amap-assessment-2016-chemicals-of-emerging-arctic-concern/1624), Protection of the Marine Environment (PAME, 2019), and Conservation of the Arctic Flora and Fauna (CAFF). The development of an Arctic monitoring program and its technical approaches will be based on the work that already exists in other programs such as those of OSPAR, the Helsinki Commission (HELCOM), the International Council for the Exploration of the Sea (ICES), the Organisation for Economic Co-operation and Development (OECD), and the United Nations Environment Programme (UNEP). Plastic pollution is typically categorized into items and particles of macro-, micro-, and nano-sizes. These guidelines address macrosized litter as well as MP (〈 5 mm), essentially including smaller size ranges (〉1 µm). However, determination of nanoplastic (〈 1 µm) particles is still hampered by technical challenges, as addressed in Section 4.3 Analytical methods, and thus not currently considered in the current recommendations. Although most studies have addressed marine litter and MP, these guidelines also comprise the Arctic’s terrestrial and freshwater environments. Thus, the objectives of the guidelines are to: 1) support litter and MP baseline mapping in the Arctic across a wide range of environmental compartments to allow spatial and temporal comparisons in the coming years; 2) initiate monitoring to generate data to assess temporal and spatial trends; 3) recommend that Arctic countries develop and implement monitoring nationally via community-based programs and other mechanisms, in the context of a pan-Arctic program; 4) provide data that can be used with the Marine Litter Regional Action Plan (ML-RAP) to assess the effectiveness of mitigation strategies; 5) act as a catalyst for future work in the Arctic related to biological effects of plastics, including determining environmentally relevant concentrations and informing cumulative effects assessments; 6) identify areas in which research and development are needed from an Arctic perspective; and 7) provide recommendations for monitoring programs whose data will feed into future global assessments to track litter and MP in the environment. To achieve these objectives, the guidelines present indicators (with limitations) of litter and MP pollution to be applied throughout the Arctic, and thus, form the basis for circumpolar comparability of approaches and data. In addition, the guidelines present technical details for sampling, sample treatment, and plastic determination, with harmonized and potentially standardized approaches. Furthermore, recommendations are given on sampling locations and sampling frequency based on best available science to provide a sound basis for spatial and temporal trend monitoring. As new data are gathered, and appropriate power analyses can be undertaken, a review of the sampling sizes, locations, and frequencies should be initiated. Plastic pollution is a local problem in Arctic communities, and thus, guidelines and references need to include community-based monitoring projects to empower communities to establish plastics monitoring with comparable results across the Arctic. Community-based monitoring is an integrated part of the objectives of this report. The monitoring program design and guidelines for its implementation are the necessary first steps for monitoring and assessment of litter and MP in the Arctic. The work under the AMAP LMEG is taking a phased approach under this new expert group. The first phase (which included the development of these Monitoring Guidelines) focuses on a monitoring framework and set of techniques for physical plastics. Later phases of the work will extend to assessments of levels, trends, and effects of litter and MP in the Arctic environment. The guidelines strictly cover environmental monitoring of litter and MP. This does not include drinking water or indoor air quality tests. Additionally, although there is an emphasis on examining litter and MP in biota that are consumed by humans, and thus of interest to human-health questions, the guidelines do not consider MP ingestion by humans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2016. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 97 (2016): 302–312, doi: 10.1890/14-2070.1.
    Description: Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological impacts of marine debris. We quantified perceived and demonstrated impacts across several levels of biological organization that make up the ecosystem and found 366 perceived threats of debris across all levels. Two hundred and ninety-six of these perceived threats were tested, 83% of which were demonstrated. The majority (82%) of demonstrated impacts were due to plastic, relative to other materials (e.g., metals, glass) and largely (89%) at suborganismal levels (e.g., molecular, cellular, tissue). The remaining impacts, demonstrated at higher levels of organization (i.e., death to individual organisms, changes in assemblages), were largely due to plastic marine debris (〉1 mm; e.g., rope, straws, and fragments). Thus, we show evidence of ecological impacts from marine debris, but conclude that the quantity and quality of research requires improvement to allow the risk of ecological impacts of marine debris to be determined with precision. Still, our systematic review suggests that sufficient evidence exists for decision makers to begin to mitigate problematic plastic debris now, to avoid risk of irreversible harm.
    Description: With support from Ocean Conservancy
    Keywords: Assemblage ; Biological organization ; Ecology ; Plastic debris ; Population ; Systematic review
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...