GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2020-03-27
    Description: Historical sea ice core chlorophyll-a (Chla) data are used to describe the seasonal, regional, and vertical distribution of ice algal biomass in Antarctic landfast sea ice. The analyses are based on the Antarctic Fast Ice Algae Chlorophyll-a data set, a compilation of currently available sea ice Chla data from landfast sea ice cores collected at circum-Antarctic nearshore locations between 1970 and 2015. Ice cores were typically sampled from thermodynamically grown first-year ice and have thin snow depths (mean=0.0520.097m). The data set comprises 888 ice cores, including 404 full vertical profile cores. Integrated ice algal Chla biomass (range: 〈0.1-219.9mg/m(2), median=4.4mg/m(2), interquartile range=9.9mg/m(2)) peaks in late spring and shows elevated levels in autumn. The seasonal Chla development is consistent with the current understanding of physical drivers of ice algal biomass, including the seasonal cycle of irradiance and surface temperatures driving landfast sea ice growth and melt. Landfast ice regions with reported platelet ice formation show maximum ice algal biomass. Ice algal communities in the lowermost third of the ice cores dominate integrated Chla concentrations during most of the year, but internal and surface communities are important, particularly in winter. Through comparison of biomass estimates based on different sea ice sampling strategies, that is, analysis of full cores versus bottom-ice section sampling, we identify biases in common sampling approaches and provide recommendations for future survey programs: for example, the need to sample fast ice over its entire thickness and to measure auxiliary physicochemical parameters. Plain Language Summary Antarctic sea ice is a key driver of physical, chemical, and biological processes in the Southern Ocean. Importantly, sea ice serves as a substrate for microscopic algae which grow in the bottom, interior, and surface layers of the ice. These algae are considered an important food source for Antarctic marine food webs. Using a newly collated database of historical sea ice core chlorophyll-a data (a proxy for ice algal biomass) from coastal sites, we describe the seasonal and vertical variability of algal biomass in Antarctic landfast sea ice. The seasonal chlorophyll-a development is consistent with the current understanding of physical drivers of ice algal biomass, including the seasonal cycle of irradiance and surface temperatures driving landfast sea ice growth and melt. Our analyses show that algae in the lowermost third of ice cores drive the annual cycle of integrated biomass, but internal and surface communities are also important. Through comparison of biomass estimates based on different sea ice sampling strategies, that is, analysis of full cores versus bottom-ice section sampling, we identify biases in common sampling approaches and provide recommendations for future survey programs: for example, the need to sample fast ice over its entire thickness and to measure auxiliary physical parameters, in particular snow-thickness data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-25
    Description: The production of Antarctic Bottom Water (AABW) is a crucial factor in determining the strength of the Meridional Overturning Circulation, and therefore plays a significant role in the ocean's contribution to the global climate. AABW is primarily formed in the Ross and Weddell Seas, with unique thermohaline characteristics. In recent years, a negative decadal salinity trend has been observed in the Southern Ocean's Pacific sector, related to AABW modification. Correspondingly in the Ross Sea, observations have indicated changes in the thermohaline characteristics of the shelf waters, precursors of the AABW, since 1995. The significant freshening in the western Ross Sea, where AABW is formed and spreads to fill the Pacific Ocean's deep basins, was attributed to the inflow of waters from West Antarctica where a dramatic melting of glaciers is occurring. To determine the freshwater inflow from West Antarctica and the role of these waters in the salinity field variability, a dedicated oceanographic cruise was carried out during austral summer 2020 in the eastern sector of the Ross Sea. Additionally, a section of the same CTD grid was repeated during January 2021. Using physical data from the CTD and LADCP casts, glider deployment and drifters, we estimated water mass characteristics and dynamical features. Eventually, discrete sea water sampling for chemical analyses (nutrients, carbonate system, trace metals, persistent organic compounds) has been carried out to provide new information about the biogeochemistry of the area and origin of the water masses.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...