GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-01-09
    Keywords: 176-735B; Age, mineral; Calculated; Correlation coefficient, isotope ratio error; DEPTH, sediment/rock; Discordance; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Indian Ocean; Joides Resolution; Lead; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-206/Uranium-238, error, relative; Lead-206/Uranium-238 ratio; Lead-207/Lead-206, error, relative; Lead-207/Lead-206 ratio; Lead-207/Uranium-235, error, relative; Lead-207/Uranium-235 ratio; Leg176; Minerals; Ocean Drilling Program; ODP; Protactinium-231/Uranium-235 ratio; Protactinium-231/Uranium-235 ratio, standard deviation; Ratio; Sample code/label; Sample ID; Standard deviation; Thermal Ionization Mass Spectrometry (TIMS); Thorium/Uranium ratio
    Type: Dataset
    Format: text/tab-separated-values, 780 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rioux, Matthew; Bowring, Samuel A; Cheadle, Michael J; John, Barbara E (2015): Evidence for initial excess 231Pa in mid-ocean ridge zircons. Chemical Geology, 397, 143-156, https://doi.org/10.1016/j.chemgeo.2015.01.011
    Publication Date: 2024-05-04
    Description: A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-04
    Keywords: 176-735B; Analysis; Beryllium; Boron; Calculated; Cerium; Cerium anomaly; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Dysprosium; Erbium; Europium; Europium anomaly; Fluorine; Gadolinium; Gadolinium/Neodymium ratio; Hafnium; Holmium; Indian Ocean; Iron; Joides Resolution; Lanthanum; Leg176; Lutetium; Minerals; Neodymium; Niobium; Ocean Drilling Program; ODP; Phosphorus; Samarium; Sample code/label; Scandium; Sensitive high-resolution ion microprobe (SHRIMP); Temperature, calculated; Terbium; Thorium; Thorium/Uranium ratio; Thulium; Titanium; Uranium; Ytterbium; Ytterbium/Gadolinium ratio; Ytterbium/Samarium ratio; Yttrium
    Type: Dataset
    Format: text/tab-separated-values, 1936 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-01
    Description: Proterozoic reconstructions of the Kaapvaal and Zimbabwe cratons have been limited by the scarcity of precisely dated paleomagnetic poles for the Zimbabwe craton. We present new U-Pb baddeleyite and apatite dates from two diabase sheets that have previously yielded paleomagnetic data from the Mashonaland igneous province in the Zimbabwe craton. Discordant baddeleyite analyses yield upper intercept dates of 1871.9 {+/-} 2.2 and 1882.7 +1.6/-1.5 Ma. Apatite data from the same samples give less precise but statistically indistinguishable dates, providing direct constraints on the post-magmatic thermal history of the diabases. The new U-Pb dates and other recently published baddeleyite dates from the Mashonaland province are coeval with mafic magmatism in the adjacent Kaapvaal craton (1879-1872 Ma), but paleomagnetic poles from the two intraplate suites differ by 39{degrees}, suggesting that the two cratons underwent substantial relative motion after ca. 1.88 Ga. Paleomagnetic reconstructions are consistent with 〉2000 km of lateral displacement being accommodated in the Limpopo orogenic belt that separates the two cratons.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 275-278, doi:10.1038/ngeo1378.
    Description: Formation of the oceanic crust at mid-ocean ridges is a fundamental component of plate tectonics. A majority of the crust at many ridges is composed of plutonic rocks that form by crystallization of mantle-derived magmas within the crust. Recent application of U/Pb dating to samples from in-situ oceanic crust has begun to provide exciting new insight into the timing, duration and distribution of magmatism during formation of the plutonic crust1-4. Previous studies have focused on samples from slow-spreading ridges, however, the time scales and processes of crustal growth are expected to vary with plate spreading rate. Here we present the first high-precision dates from plutonic crust formed at the fast-spreading East Pacific Rise (EPR). Individual zircon minerals yielded dates from 1.420–1.271 million years ago, with uncertainties of ± 0.006–0.081 million years. Within individual samples, zircons record a range of dates of up to ~0.124 million years, consistent with protracted crystallization or assimilation of older zircons from adjacent rocks. The variability in dates is comparable to data from the Vema lithospheric section on the Mid-Atlantic Ridge (MAR)3, suggesting that time scales of magmatic processes in the lower crust may be similar at slow- and fast-spreading ridges.
    Description: This research was partially funded by NSF grant OCE-0727914 (SAB), a Cardiff University International Collaboration Award (CJL) and NERC grant NE/C509023/1 (CJM).
    Description: 2012-07-29
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics 29 (2010): TC3001, doi:10.1029/2009TC002541.
    Description: Seismic profiles of several modern arcs have identified thick, low-velocity midcrustal layers (Vp = 6.0–6.5 km/s) that are interpreted to represent intermediate to felsic plutonic crust. The presence of this silicic crust is surprising given the mafic composition of most primitive mantle melts and could have important implications for the chemical evolution and bulk composition of arcs. However, direct studies of the middle crust are limited by the restricted plutonic exposures in modern arcs. The accreted Talkeetna arc, south central Alaska, exposes a faulted crustal section from residual subarc mantle to subaerial volcanic rocks of a Jurassic intraoceanic arc and is an ideal place to study the intrusive middle crust. Previous research on the arc, which has provided insight into a range of arc processes, has principally focused on western exposures of the arc in the Chugach Mountains. We present new U-Pb zircon dates, radiogenic isotope data, and whole-rock geochemical analyses that provide the first high-precision data on large intermediate to felsic plutonic exposures on Kodiak Island and the Alaska Peninsula. A single chemical abrasion–thermal ionization mass spectrometry analysis from the Afognak pluton yielded an age of 212.87 ± 0.19 Ma, indicating that the plutonic exposures on Kodiak Island represent the earliest preserved record of Talkeetna arc magmatism. Nine new dates from the extensive Jurassic batholith on the Alaska Peninsula range from 183.5 to 164.1 Ma and require a northward shift in the Talkeetna arc magmatic axis following initial emplacement of the Kodiak plutons, paralleling the development of arc magmatism in the Chugach and Talkeetna mountains. Radiogenic isotope data from the Alaska Peninsula and the Kodiak archipelago range from $\varepsilon$Nd(t) = 5.2 to 9.0 and 87Sr/86Srint = 0.703515 to 0.703947 and are similar to age-corrected data from modern intraoceanic arcs, suggesting that the evolved Alaska Peninsula plutons formed by extensive differentiation of arc basalts with little or no involvement of preexisting crustal material. The whole-rock geochemical data and calculated seismic velocities suggest that the Alaska Peninsula represents an analogue for the low-velocity middle crust observed in modern arcs. The continuous temporal record and extensive exposure of intermediate to felsic plutonic rocks in the Talkeetna arc indicate that evolved magmas are generated by repetitive or steady state processes and play a fundamental role in the growth and evolution of intraoceanic arcs.
    Keywords: Talkeetna arc ; Arc ; Alaska
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): B03204, doi:10.1029/2007JB005208.
    Description: The Talkeetna arc is one of two intraoceanic arcs where much of the section from the upper mantle through the volcanic carapace is well exposed. We reconstruct the vertical section of the Talkeetna arc by determining the (re)crystallization pressures at various structural levels. The thermobarometry shows that the tonalites and quartz diorites intruded at ∼5–9 km into a volcanic section estimated from stratigraphy to be 7 km thick. The shallowest, Tazlina and Barnette, gabbros crystallized at ∼17–24 km; the Klanelneechena Klippe crystallized at ∼24–26 km; and the base of the arc crystallized at ∼35 km depth. The arc had a volcanic:plutonic ratio of ∼1:3–1:4. However, many or most of the felsic plutonic rocks may represent crystallized liquids rather than cumulates so that the liquid:cumulate ratio might be 1:2 or larger. The current 5- to 7-km structural thickness of the plutonic section of the arc is ∼15–30% of the original 23- to 28-km thickness. The bulk composition of the original Talkeetna arc section was ∼51–58 wt % SiO2.
    Description: Funded by NSF EAR-9910899.
    Keywords: Island arc ; Garnet ; Thermobarometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 162–180, doi:10.1002/2015GC006027.
    Description: Oceanic detachment faults are increasingly recognized as playing an integral role in the seafloor spreading process at slow and ultraslow spreading mid-ocean ridges, with significant consequences for the architecture of the oceanic lithosphere. Although melt supply is considered to play a critical control on the formation and evolution of oceanic detachments, much less well understood is how melts and faults interact and influence each other. Few direct constraints on the locus and depth of melt emplacement in the vicinity of detachments are available. Gabbros drilled in ODP Hole 923A near the intersection of the Mid-Atlantic Ridge and the Kane transform fault (23°N; the MARK area) represent magmas emplaced into the footwall of such a detachment fault and unroofed by it. We here present U-Pb zircon dates for these gabbros and associated diorite veins which, when combined with a tectonic reconstruction of the area, allow us to calculate the depths at which the melts crystallized. Th-corrected single zircon U-Pb dates from three samples range from 1.138 ± 0.062 to 1.213 ± 0.021 Ma. We find a crystallization depth of 6.4 +1.7/−1.3 km, and estimate that the melts parental to the gabbros were initially emplaced up to 1.5 km deeper, at 〈8 km below the seafloor. The tectonic reconstruction implies that the detachment fault responsible for the exposure of the sampled sequence likely crossed the ridge axis at depth, suggesting that melt emplacement into the footwall of oceanic detachment faults is an important process. The deep emplacement depth we find associated with “detachment mode” spreading at ∼1.2 Ma appears to be significantly greater than the depth of magma reservoirs during the current “magmatic mode” of spreading in the area, suggesting that the northern MARK segment preserves a recent switch between two temporally distinct modes of spreading with fundamentally different lithospheric architecture.
    Description: NERC Grant Number: NE/H020004/1; WHOI Deep Ocean Exploration Institute
    Keywords: Mid-Atlantic Ridge ; Detachment fault ; Ocean Drilling Program ; Geochronology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...