GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Oceanography: general (climate and interannual variability) ; Oceanography: physical (general circulation; remote sensing)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The mean dynamic topography of the surface of the North Atlantic is estimated using an inverse model of the ocean circulation constrained by hydro-graphic and altimetric observations. In the North Atlantic, altimetric observations have no significant impact on the topography estimate because of the limited precision of available geoid height models. They have a significant impact, however, when uncertainties in the density field are increased to simulate interpolation errors in regions where hydrographic data are scarce. This result, which moderates the conclusion drawn by Ganachaud and co-workers of no significant contribution of altimetric observations to the determination of the large-scale steady circulation, reflects the simple idea that altimetric data are most useful near the surface of the ocean and in areas where the hydrography is poorly determined. One application of the present inverse estimate of the mean dynamic topography is to compute a geoid height correction over the North Atlantic which reduces the uncertainty in the geoid height expanded to spherical harmonic 40 down to a level of about 5 cm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The time dependent circulation of the North Brazil Current is studied with three numerical ocean circulation models, which differ by the vertical coordinate used to formulate theprimitive equations. The models are driven with the same surface boundary conditions and their horizontal grid-resolution (isotropic, 1/3° at the equator) is in principle fine enough topermit the generation of mesoscale eddies. Our analysis of the mean seasonal currents concludes that the volume transport of the North Brazil Current (NBC) at the equator isprincipally determined by the strength of the meridional overturning, and suggests that the return path of the global thermohaline circulation is concentrated in the NBC. Models whichsimulate a realistic overturning at 24°N of the order of 16-18 Sv also simulate a realistic NBC transport of nearly 35 Sv comparable to estimates deduced from the most recentobservations. In all models, the major part of this inflow of warm waters from the South Atlantic recirculates in the zonal equatorial current system, but the models also agree on theexistence of a permanent coastal mean flow to the north-west, from the equator into the Carribean Sea, in the form of a continuous current or a succession of eddies. Importantdifferences are found between models in their representation of the eddy field. The reasons invoked are the use of different subgrid-scale parameterisations, and differences instability of the NBC retroflection loop because of differences in the representation of the effect of bottom friction according to the vertical coordinate that is used. Finally, even ifdifferences noticed between models in the details of the seasonal mean circulation and water mass properties could be explained by differences in the eddy field, nonetheless themajor characteristics (mean seasonal currents, volume and heat transports) appears to be at first order driven by the strength of the thermohaline circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: The South Atlantic: Present and Past Circulation. , ed. by Wefer, G., Berger, W. H., Siedler, G. and Webb, D. J. Springer, Berlin, Heidelberg, pp. 105-120. ISBN 3-540-62079-6
    Publication Date: 2020-04-03
    Description: Hydrographic data along 11°S occupied in 1983 by the R.V. OCEANUS are used together with various wind climatologies to estimate the annual average transport of heat at this latitude. Some motivation for expecting fairly well-defined estimates at this latitude compared to others comes from the absence of a strong western boundary current. Results include flow in four layers representing the thermocline, Antarctic Intermediate Water, North Atlantic Deep Water, and Antarctic Bottom Water, using zero velocity reference level choices based on property distributions. The annual average heat transport is estimated to be 0.6 ± 0.17 x 1015 W. Previous estimates of the transport at 8–16°S range from 0.2 PW to greater than 1 PW. Interannual variability from the wind field alone leads to interannual heat transport variability of about 0.05 PW. Comparisons with other recent studies at 45–30°S and 11°N are made.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-07
    Description: The time dependent circulation of the North Brazil Current is studied with three numerical ocean circulation models, which differ by the vertical coordinate used to formulate the primitive equations. The models are driven with the same surface boundary conditions and their horizontal grid-resolution (isotropic, 1/3° at the equator) is in principle fine enough to permit the generation of mesoscale eddies. Our analysis of the mean seasonal currents concludes that the volume transport of the North Brazil Current (NBC) at the equator is principally determined by the strength of the meridional overturning, and suggests that the return path of the global thermohaline circulation is concentrated in the NBC. Models which simulate a realistic overturning at 24°N of the order of 16–18 Sv also simulate a realistic NBC transport of nearly 35 Sv comparable to estimates deduced from the most recent observations. In all models, the major part of this inflow of warm waters from the South Atlantic recirculates in the zonal equatorial current system, but the models also agree on the existence of a permanent coastal mean flow to the north-west, from the equator into the Carribean Sea, in the form of a continuous current or a succession of eddies. Important differences are found between models in their representation of the eddy field. The reasons invoked are the use of different subgrid-scale parameterisations, and differences in stability of the NBC retroflection loop because of differences in the representation of the effect of bottom friction according to the vertical coordinate that is used. Finally, even if differences noticed between models in the details of the seasonal mean circulation and water mass properties could be explained by differences in the eddy field, nonetheless the major characteristics (mean seasonal currents, volume and heat transports) appears to be at first order driven by the strength of the thermohaline circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...