GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Sprache
Erscheinungszeitraum
  • 1
    In: Cell, Elsevier BV, Vol. 184, No. 25 ( 2021-12), p. 6119-6137.e26
    Materialart: Online-Ressource
    ISSN: 0092-8674
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2021
    ZDB Id: 187009-9
    ZDB Id: 2001951-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 22_Supplement ( 2020-11-15), p. PO-058-PO-058
    Kurzfassung: Metastatic pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with few therapeutic options. Tumor transcriptional state is a strong predictor of clinical outcome in PDAC, with two primary cell states, basal-like and classical, identified by bulk transcriptional profiling. Basal-like tumors carry a worse prognosis, but the mechanisms underlying this survival difference, the degree of cellular heterogeneity within a given tumor, and the subtype-specific contributions from the local immune microenvironment are not well understood. In addition, there are ongoing efforts to use patient-derived organoid models as functional surrogates for an individual patient’s disease, but the degree to which patient transcriptional phenotypes are preserved in their matched organoid models remains unclear. Here, we describe a pipeline that enables both direct characterization of the liver metastatic niche via single-cell RNA-sequencing and functional assessment of PDAC tumor biology in patient-matched organoid models. Starting from core needle biopsies of metastatic PDAC lesions, we applied this approach to profile 22 patient samples and their matched organoid models using single-cell RNA-sequencing with Seq-Well. We demonstrate significant heterogeneity at the single-cell level across the basal-like to classical transcriptional spectrum. Basal-like cells expressed more mesenchymal and stem-like features, while classical cells expressed features of epithelial and pancreatic progenitor transcriptional programs. A population of “hybrid” malignant cells co-expressed markers of both basal-like and classical states, suggesting that these phenotypes lie on a continuum rather than as discrete entities. Microenvironmental composition also differed by subtype across T/NK and macrophage populations. Specifically, basal-like tumors exhibited tumor cell crosstalk with specific macrophage subsets, while classical tumors harbored greater immune infiltration and a relatively pro-angiogenic microenvironment, raising important considerations for subtype-specific microenvironmental directed therapy. Finally, we found that matched organoids exhibited transcriptional drift along the basal-like to classical axis relative to their parent tumors, with evidence for selection against basal-like phenotypes in vitro. However, tumor cells in organoid culture exhibited remarkable plasticity and could recover in vivo basal-like phenotypes in response to changes in their growth conditions. Taken together, our work provides a framework for the analysis of human cancers and their matched models using single-cell methods to dissect tumor-intrinsic and extrinsic contributions, and reveals novel insights into the transcriptional heterogeneity and plasticity of PDAC. Citation Format: Srivatsan Raghavan, Peter S. Winter, Andrew W. Navia, Hannah L. Williams, Alan DenAdel, Radha L. Kalekar, Jennyfer Galvez-Reyes, Kristen E. Lowder, Nolawit Mulugeta, Manisha S. Raghavan, Ashir A. Borah, Sara A. Vayrynen, Andressa Dias Costa, Junning Wang, Emma Reilly, Dorisanne Y. Ragon, Lauren K. Brais, Alex M. Jaeger, James M. Cleary, Lorin Crawford, Jonathan A. Nowak, Brian M. Wolpin, William C. Hahn, Andrew J. Aguirre, Alex K. Shalek. Transcriptional subtype-specific microenvironmental crosstalk and tumor cell plasticity in metastatic pancreatic cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2020 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2020;80(22 Suppl):Abstract nr PO-058.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2020
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 21_Supplement ( 2020-11-01), p. PR03-PR03
    Kurzfassung: The majority of patients with pancreatic ductal adenocarcinoma (PDAC) present at diagnosis with metastatic disease and have median survival times of less than 12 months. Recent studies have demonstrated that PDAC tumors with distinct transcriptional phenotypes are associated with different clinical outcomes. However, the mechanisms underlying this survival difference, the degree of cellular heterogeneity within a given tumor, and the subtype-specific contributions from the local immune microenvironment are not understood. In addition, there are ongoing efforts to understand if patient-derived organoid models can be used as functional surrogates for an individual patient’s disease. It remains unclear if patient transcriptional phenotypes are preserved in their matched organoid models. Here, we describe a pipeline that permits both direct characterization of the PDAC liver metastatic niche via single-cell RNA-sequencing and functional assessment of PDAC tumor biology in patient-matched organoid models. Starting from core needle biopsies of metastatic PDAC lesions containing 50-100k viable cells, we simultaneously perform: (1) single-cell RNA-sequencing using Seq-Well and (2) three-dimensional organoid culture generation. We have applied this approach to profile 23 patients and their matched early passage organoid models. Our pipeline yields high-quality single-cell measurements across diverse cell types—both malignant and non-malignant—enabling a principled dissection of tumor intrinsic and extrinsic factors. Evaluation of clinically relevant transcriptional signatures (e.g., Basal-like vs Classical) revealed extensive heterogeneity at the single-cell level. Single malignant cells are capable of co-expressing markers of both Basal-like and Classical states suggesting these phenotypes lie on a continuum rather than as discrete types. Basal cells express more stem-like features and inhabit a distinct microenvironment compared to their Classical counterparts. Microenvironmental composition differed on several levels between the two types, most notably their T/NK cell and macrophage populations with specific implications for subtype-specific microenvironmental directed therapy. Finally, we found that the microenvironment in traditional organoid culture selects against the Basal-like subtype and that these tumors are capable of significant phenotypic plasticity in vitro. We are able to recover Basal-like features by altering the organoid growth conditions. These findings suggest the need for distinct environments to support specific transcriptional subtypes in PDAC. Overall, our work provides a framework for the analysis of human cancers and their matched models using single-cell methods, and reveals novel, actionable insights into the heterogeneity and plasticity underlying survival in transcriptionally distinct forms of PDAC. Citation Format: Peter S. Winter, Srivatsan Raghavan, Andrew Navia, Hannah Williams, Alan DenAdel, Radha Kalekar, Jennyfer Galvez-Reyes, Kristen Lowder, Nolawit Mulugeta, Manisha Raghavan, Ashir Borah, Raymond Ng, Junning Wang, Emma Reilly, Dorisanne Ragon, Lauren Brais, Kimmie Ng, James Cleary, Lorin Crawford, Scott Manalis, Jonathan Nowak, Brian Wolpin, William Hahn, Andrew Aguirre, Alex Shalek. Subtype-specific microenvironmental crosstalk and tumor cell plasticity in metastatic pancreatic cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact; 2020 Sep 17-18. Philadelphia (PA): AACR; Cancer Res 2020;80(21 Suppl):Abstract nr PR03.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2020
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 11_Supplement ( 2020-06-01), p. PR02-PR02
    Kurzfassung: The majority of patients with pancreatic ductal adenocarcinoma (PDAC) present with metastatic disease at diagnosis and have median survival times of less than 12 months. Recent studies have demonstrated that PDAC tumors with distinct transcriptional signatures are associated with different clinical outcomes, and that the tumor microenvironment may contribute to PDAC pathogenesis. In parallel, there are ongoing efforts to understand if patient-derived organoid models can be used as functional surrogates for an individual patient’s disease. However, it remains unclear if patient transcriptional phenotypes are preserved in their matched organoid models. Here, we describe a pipeline that permits both direct characterization of the PDAC liver metastatic niche via single-cell RNA-sequencing and functional assessment of PDAC tumor biology in patient-matched organoid models. Starting from core needle biopsies of metastatic PDAC lesions containing 50-100k viable cells, we simultaneously perform (1) low-input single-cell RNA-sequencing using Seq-Well and (2) three-dimensional organoid culture generation. We have applied this approach to profile 21 patients and their matched early passage organoid models. Our pipeline yields high-quality single-cell measurements across diverse cell types—both tumor and nontumor stromal—enabling a principled dissection of tumor intrinsic and extrinsic factors. Evaluation of clinically relevant transcriptional signatures (e.g., basal-like vs. classical) revealed extensive heterogeneity at the single-cell level and identified new, hybrid expression states. We also observed evidence of significant subtype-specific crosstalk between immune populations and tumor cells—specifically between T cells and tumor cells originating from basal-like tumors. Serial sampling at different stages of treatment revealed transcriptional shifts in tumor cells suggestive of significant plasticity. We similarly found that organoids derived from basal-like tumors exhibited considerable plasticity in vitro and had decreased fitness in standard organoid culture conditions, suggesting the need for distinct environments to support specific transcriptional subtypes. Overall, our approach provides actionable insights into the heterogeneity and plasticity of human PDAC, as well as a pipeline and framework for the analysis of PDAC and other cancers. This abstract is also being presented as Poster A50. Citation Format: Peter S. Winter, Srivatsan Raghavan, Andrew W. Navia, Hannah Williams, Jennyfer Galvez-Reyes, Radha Kalekar, Ashir Borah, Alan DenAdel, Manisha Raghavan, Kristen Lowder, Nolawit Mulugeta, Junning Wang, Emma Reilly, Lauren Brais, Lorin Crawford, James McFarland, James M. Cleary, Jonathan Nowak, Brian M. Wolpin, Andrew J. Aguirre, William C. Hahn, Alex K. Shalek. Matched metastatic pancreatic ductal adenocarcinoma biopsies and organoid models reveal tumor cell transcriptional plasticity and subtype-specific microenvironmental crosstalk [abstract]. In: Proceedings of the AACR Special Conference on the Evolving Landscape of Cancer Modeling; 2020 Mar 2-5; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2020;80(11 Suppl):Abstract nr PR02.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2020
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2021
    In:  Resources, Conservation and Recycling Vol. 171 ( 2021-08), p. 105641-
    In: Resources, Conservation and Recycling, Elsevier BV, Vol. 171 ( 2021-08), p. 105641-
    Materialart: Online-Ressource
    ISSN: 0921-3449
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2021
    ZDB Id: 1498716-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2015
    In:  Journal of Hydrology Vol. 526 ( 2015-07), p. 265-273
    In: Journal of Hydrology, Elsevier BV, Vol. 526 ( 2015-07), p. 265-273
    Materialart: Online-Ressource
    ISSN: 0022-1694
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2015
    ZDB Id: 240687-1
    ZDB Id: 1473173-3
    SSG: 13
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Theoretical and Applied Climatology Vol. 137, No. 1-2 ( 2019-7), p. 545-555
    In: Theoretical and Applied Climatology, Springer Science and Business Media LLC, Vol. 137, No. 1-2 ( 2019-7), p. 545-555
    Materialart: Online-Ressource
    ISSN: 0177-798X , 1434-4483
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 1463177-5
    ZDB Id: 405799-5
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 41, No. 16_suppl ( 2023-06-01), p. 4145-4145
    Kurzfassung: 4145 Background: Transcriptional profiling of pancreatic cancers (PC) has defined classical and basal subtypes; basal tumors have worse outcomes. Mesenchymal (MES) and neural-like progenitor (NRP) subtypes are increasingly recognized and enriched post-therapy. Initial data suggests worse outcomes to FOLFIRINOX (FFX) compared with gemcitabine nab-Paclitaxel (GnP) in basal tumors. Several clinical trials are ongoing to investigate this. Here, we examined the clinical implications of transcriptional subtypes in a large, real-world dataset. Methods: Retrospective IRB exempt, deidentified data was examined from NextGen DNA and RNA sequencing performed on PCs at Caris Life Sciences (Phoenix, AZ). Classical and basal cell states were identified using RNA-seq and the PurIST algorithm in a genomic cohort or GATA6 and KRT5 expression levels in a clinical cohort. Tumor microenvironment immune cell composition on RNA seq was performed using QuantiSeq. Survival was obtained from insurance claims data and calculated from first treatment date to last known contact. Kaplan-Meier estimates were calculated for patient cohorts. P values were adjusted using Benjamini-Hochberg correction. Results: A total of 7,250 PCs were profiled in the genomic cohort. 3,063 tumors (42.2%) were strongly classical (SC), 2,015 tumors (27.8%) were strongly basal (SB) and the remaining had mixed phenotypes. MES and NRP marker genes were significantly co-expressed with each other, with basal genes, and anti-correlated with classical genes. When compared to SC, SB had significantly higher mutation rates in KRAS (93% vs. 88%), TP53 (83% vs. 72%) and ARID1A (12% vs. 8%), whereas SMAD4 (23% vs. 17%) mutations were more common in SC (all q 〈 0.05). There were no differences in mutation rates in homologous recombination or mismatch repair genes. SB had a significantly higher fraction of M1 macrophages (fold change [FC]: 1.14) and neutrophils (FC 1.16), whereas SC tumors had higher M2 macrophages (FC 1.18), NK (FC 1.2), and dendritic cells. Overall proportions of CD4/8 T cells were low and not different. Interestingly, SB had higher levels of PD-L1 by IHC (4.8% vs. 35%) and higher expression of immune exhaustion genes including CTLA4 (FC 1.19), TIM3 (FC 1.22) and PD-1 (FC 1.43) (all q 〈 0.05). The clinical cohort had 1,623 patients. Basal tumors had an inferior survival (median survival: 8.2 months (mo) vs 13.3 mo (Hazard Ratio (HR) 0.67, p 〈 0.00001)) and showed a significant improvement in outcomes when treated with upfront FFX vs GnP (n = 80 vs 90, Median: 15.8 vs 7.4 mos., HR 0.68, p = 0.021). This difference between FFX vs GnP was less pronounced in classical tumors (n = 70 vs 89, Median: 17.3 vs 15.4 mos, HR 0.70, p = 0.049). Conclusions: Our work represents the largest known real world molecular comparison of transcriptional subtypes of PC. Differential outcomes for patients with basal tumors treated with FFX versus GnP warrants further investigation in prospective studies.
    Materialart: Online-Ressource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Clinical Oncology (ASCO)
    Publikationsdatum: 2023
    ZDB Id: 2005181-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 38, No. 4_suppl ( 2020-02-01), p. 567-567
    Kurzfassung: 567 Background: Fibroblast growth factor receptor (FGFR) pathway alterations have been identified in approximately 20% of patients (pts) with intrahepatic cholangiocarcinoma (IHCC), most commonly by FGFR2 fusions. Early phase clinical trials have demonstrated encouraging efficacy of FGFR inhibitors in pts with FGFR2-translocated cholangiocarcinoma, but efficacy in pts with other FGFR2 activating alterations is less clear. Methods: Pts with cholangiocarcinoma underwent CLIA-certified next generation DNA sequencing (NGS) to identify actionable alterations. FGFR2 fusions and other FGFR2 genomic events were assessed, with genomic characterization performed before and after treatment with FGFR inhibitors in appropriate pts. Novel extracellular domain in-frame deletions (INDELs) of FGFR2 and apparent resistance mutations were investigated for oncogenic activity and inhibitor resistance in vitro and in vivo. Results: Cholangiocarcinomas from 284 pts (136 male, 148 female; median age, 64 [20-89], including 139 IHCCs, were sequenced. Among the IHCCs, 16 (11.5%) had FGFR2 fusions, with 9 different gene partners. Surprisingly, 5 (3.6%) IHCCs harbored extracellular domain FGFR2 INDELs. Two of these IHCCs harbored an exon 5 deletion FGFR2 p.H167_N173del. Expression of FGFR2 p.H167_N173del in 3T3 cells resulted in oncogenic transformation. In the clinic, two pts with FGFR2 p.H167_N173del were treated with Debio1347, an oral FGFR-1/2/3 inhibitor. Both patients achieved a durable partial response (PR) of 11 months, with one of the pts still on active treatment with Debio-1347. The patient who developed acquired resistance underwent repeat biopsy, and NGS identified a secondary mutation ( FGFR2 p. L617F) in the kinase domain. In vitro studies demonstrated that this mutation confers resistance to Debio1347. This patient was subsequently treated with another FGFR inhibitor and again experienced a PR lasting 17 months. A third biopsy after disease progression demonstrated a previously undetected L597Q BRAF mutation. Conclusions: Extracellular domain FGFR2 in-frame deletions are a novel genomic alteration in IHCC that are transforming and predict clinical sensitivity to FGFR inhibitors.
    Materialart: Online-Ressource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Clinical Oncology (ASCO)
    Publikationsdatum: 2020
    ZDB Id: 2005181-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Informa UK Limited ; 2015
    In:  Baylor University Medical Center Proceedings Vol. 28, No. 1 ( 2015-01), p. 46-49
    In: Baylor University Medical Center Proceedings, Informa UK Limited, Vol. 28, No. 1 ( 2015-01), p. 46-49
    Materialart: Online-Ressource
    ISSN: 0899-8280 , 1525-3252
    Sprache: Englisch
    Verlag: Informa UK Limited
    Publikationsdatum: 2015
    ZDB Id: 2205407-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...