GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-03-15
    Beschreibung: Experimentally elevated pCO2 and the associated pH drop are known to differentially affect many aspects of the physiology of diatoms under different environmental conditions or in different regions. However, contrasting responses to elevated pCO2 in the dark and light periods of a diel cycle have not been documented. By growing the model diatom Phaeodactylum tricornutum under 3 light levels and 2 different CO2 concentrations, we found that the elevated pCO2/pH drop projected for future ocean acidification reduced the diatom's growth rate by 8–25% during the night period but increased it by up to 9–21% in the light period, resulting in insignificant changes in growth over the diel cycle under the three different light levels. The elevated pCO2 increased the respiration rates irrespective of growth light levels and light or dark periods and enhanced its photosynthetic performance during daytime. With prolonged exposure to complete darkness, simulating the sinking process in the dark zones of the ocean, the growth rates decreased faster under elevated pCO2, along with a faster decline in quantum yield and cell size. Our results suggest that elevated pCO2 enhances the diatom's respiratory energy supplies to cope with acidic stress during the night period but enhances its death rate when the cells sink to dark regions of the oceans below the photic zone, with implications for a possible acidification-induced reduction in vertical transport of organic carbon.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids/Chlorophyll a ratio; Carotenoids/Chlorophyll a ratio, standard deviation; Carotenoids per cell; Cell, diameter; Cell, diameter, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chromista; Effective photochemical quantum yield; Effective photochemical quantum yield, standard deviation; Electron transport rate, relative; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Laboratory experiment; Laboratory strains; Light; Light mode; Maximum quantum yield of photosystem II; Maximum quantum yield of photosystem II, standard deviation; Net photosynthesis rate, oxygen, per cell; Net photosynthesis rate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeodactylum tricornutum; Phytoplankton; Primary production/Photosynthesis; Ratio; Ratio, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen, per cell; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperature, water; Time in hours; Treatment; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 3030 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Gao, Guang; Qu, Liming; Burgess, J Grant; Li, Xinshu; Xu, Juntian (2019): Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsz135
    Publikationsdatum: 2024-03-15
    Beschreibung: To understand how Ulva species might respond to salinity stress during future ocean acidification we cultured a green tide alga Ulva linza at various salinities (control salinity, 30 PSU; medium salinity, 20 PSU; low salinity, 10 PSU) and CO2 concentrations (400 and 1000 ppmv) for over 30 days. The results showed that, under the low salinity conditions, the thalli could not complete its whole life cycle. The specific growth rate (SGR) of juvenile thalli decreased significantly with reduced salinity but increased with a rise in CO2. Compared to the control, medium salinity also decreased the SGR of adult thalli at low CO2 but did not affect it at high CO2. Similar patterns were also found in relative electron transport rate (rETR), non-photochemical quenching, saturating irradiance, and Chl b content. Although medium salinity reduced net photosynthetic rate and maximum rETR at each CO2 level, these negative effects were significantly alleviated at high CO2 levels. In addition, nitrate reductase activity was reduced by medium salinity but enhanced by high CO2. These findings indicate that future ocean acidification would enhance U. linza's tolerance to low salinity stress and may thus facilitate the occurrence of green tides dominated by U. linza.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids; Carotenoids, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll b; Chlorophyll b, standard deviation; Chlorophyta; Coast and continental shelf; Electron transport rate, relative; Electron transport rate, relative, standard deviation; Electron transport rate efficiency; Electron transport rate efficiency, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Generation span; Generation span, standard deviation; Growth; Growth/Morphology; Growth rate, standard deviation; Irradiance; Laboratory experiment; Lianyungang; Light saturation point; Light saturation point, standard deviation; Macroalgae; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Net photosynthesis rate, oxygen; Net photosynthesis rate, standard deviation; Nitrate reductase activity; Nitrate reductase activity, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; SeaLevel; Single species; Species; Stage; Temperate; Temperature, water; Temperature, water, standard deviation; TGS; Tide gauge station; Treatment; Type; Ulva linza; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 1884 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-03-15
    Beschreibung: Diatom responses to ocean acidification have been documented with variable and controversial results. We grew the coastal diatom Thalassiosira weissflogii under 410 (LC, pH 8.13) vs 1000 μatm (HC, pH 7.83) pCO2 and at different levels of light (80, 140, 220 μmol photons/m**2/s), and found that light level alters physiological responses to OA. CO2 concentrating mechanisms (CCMs) were down-regulated in the HC-grown cells across all the light levels, as reflected by lowered activity of the periplasmic carbonic anhydrase and decreased photosynthetic affinity for CO2 or dissolved inorganic carbon. The specific growth rate was, however, enhanced significantly by 9.2% only at the limiting low light level. These results indicate that rather than CO2 “fertilization”, the energy saved from down-regulation of CCMs promoted the growth rate of the diatom when light availability is low, in parallel with enhanced respiration under OA to cope with the acidic stress by providing extra energy.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids/Chlorophyll a ratio; Carotenoids/Chlorophyll a ratio, standard deviation; Carotenoids per cell; Cell size; Cell size, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chromista; Effective quantum yield; Effective quantum yield, standard deviation; Electron transport rate, relative; Electron transport rate, relative, standard deviation; Electron transport rate efficiency; Electron transport rate efficiency, standard deviation; Extracellular carbonic anhydrase activity, per cell; Extracellular carbonic anhydrase activity, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Laboratory strains; Light; Light saturation point; Light saturation point, standard deviation; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Maximum quantum yield of photosystem II; Maximum quantum yield of photosystem II, standard deviation; Net photosynthesis rate, oxygen, per cell; Net photosynthesis rate, oxygen, per chlorophyll a; Net photosynthesis rate, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Oxygen evolution, daytime; Oxygen evolution, daytime, standard deviation; Oxygen evolution per cell, daytime; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Primary production/Photosynthesis; Ratio; Ratio, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen, per cell; Respiration rate, oxygen, per chlorophyll a; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperature, water; Thalassiosira weissflogii; Time in days; Treatment; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 4428 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-03-15
    Beschreibung: Eutrophic coastal regions are highly productive and greatly influenced by human activities. Primary production supporting the coastal ecosystems is supposed to be affected by progressive ocean acidification driven by increasing CO2 emissions. In order to investigate the effects of high pCO2 (HC) on eutrophic plankton community structure and ecological functions, we employed 9 mesocosms and carried out an experiment under ambient (410 ppmv) and future high (1000 ppmv) atmospheric pCO2 conditions, using in situ plankton community in Wuyuan Bay, East China Sea. Our results showed that HC along with natural seawater temperature rise significantly boosted biomass of diatoms with decreased abundance of dinoflagellates in the late stage of the experiment, demonstrating that HC repressed the succession from diatoms to dinoflagellates, a phenomenon observed during algal blooms in the East China Sea. HC did not significantly influence the primary production or biogenic silica contents of the phytoplankton assemblages. However, the HC treatments increased the abundance of viruses and heterotrophic bacteria, reflecting a refueling of nutrients for phytoplankton growth from virus-mediated cell lysis and bacterial degradation of organic matters. Conclusively, our results suggest that increasing CO2 concentrations can modulate plankton structure including the succession of phytoplankton community and the abundance of viruses and bacteria in eutrophic coastal waters, which may lead to altered biogeochemical cycles of carbon and nutrients.
    Schlagwort(e): Ammonium; Aragonite saturation state; Bacteria; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Mesocosm or benthocosm; Night period respiration, carbon; Nitrate; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Primary production, carbon assimilation; Primary production/Photosynthesis; Replicates; Respiration; Salinity; Silicate; Temperate; Temperature, water; Treatment; Type; Viral abundance; Wuyuan_Bay_OA
    Materialart: Dataset
    Format: text/tab-separated-values, 6225 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...