GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Geology-Europe, Central. ; Electronic books.
    Description / Table of Contents: Publication of the Deutsche Geopysikalische Gesellschaft.
    Type of Medium: Online Resource
    Pages: 1 online resource (441 pages)
    Edition: 1st ed.
    ISBN: 9783642664038
    DDC: 551.130943
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 4 (1992), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Since 1975 several high-resolution seismic-refraction and reflection surveys have been carried out in western Germany to investigate the structure of the Earth's crust and uppermost mantle. The investigation culminated in the seismic-refraction survey along the 825 km long central part of the European Geotraverse (EGT) in 1986. This contribution summarizes the main results of the more recent crustal investigations along and around the EGT.The internal crustal structure throughout the area of the Variscides is very complex and changes laterally considerably. Distinct crustal blocks differing in their internal structure can be assigned to geologically defined units of the Variscan and Caledonian orogeny. In spite of local deviations, in general a more or less transparent and low-velocity upper crust contrasts with a highly reflective lower crust. A subdivision of upper and lower crust by a well-defined boundary (Conrad discontinuity) is not always seen. Towards the Alps the average velocity of the lower crust is as low as 6.2 km s−1, in contrast to the area north of the Swabian Jura where the velocities above Moho vary between 6.8 and 7.2 km s−1. In Northern Germany, the Elbe line separates the lower crust into two regions with 6.4 km s−1 average velocity in the south and 6.9 km s−1 in the north.The total crustal thickness under the Variscan part of Germany is fairly constant between 28 and 30 km, except under the Rhine Graben area with 25–26 km and beneath the central part of the Rhenish Massif where an anomalous crustal thickening to 37 km is observed. Under northern Germany the Moho rises to about 26 km depth and the data indicate at least one fault-like step of 1 km before the crust thickens toward the Ringkobing-Fyn basement high. The synthesis of seismic velocity structure and petrological information from xenolith studies allows us to propose a mafic composition for the deeper levels of the crust and uppermost mantle which may be valid at least for the central part of the Variscan crust along the European Geotraverse in Central Europe.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 107 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The detection and evaluation of anisotropy in realistic earth structures by P-wave measurements is difficult. It is generally assumed that absolute velocity variations with azimuth must be measured but it has also been shown that heterogeneity may make it impossible to do this. It may even be impossible to establish that anisotropy has any part in the generation of the observations. We have found, however, that the whole appearance of wide-angle seismic sections generated by a realistic anisotropic lithosphere changes systematically with azimuth and propose that this can be an important diagnostic. As long as the degree of lateral heterogeneity is not too great, it is even possible to measure anisotropic structure at depth using vertical component seismic sections only.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In August 1985 the crustal structure underlying the southern part of the Kenya Rift Valley was investigated by long-range explosion seismology. the experiment (KRISP 85) consisted of two seismic lines in the central sector of the rift, one along the axis and the other across it. Interpretation of the data, including time-term analysis and ray tracing has shown that the thickness of rift infill varies from about 6km below Lake Naivasha to about 2 and 1.5km below Lake Magadi and Lake Bogoria respectively. the underlying material has a P-wave velocity of 6.05 ± 0.03 km s-1 which suggests that the rift is underlain by Precambrian metamorphic basement. A localized high-velocity zone identified to the east of Nakuru may be due to basic intrusive material. the P-wave velocity increases discontinuously to 6.45 ± 0.2 km s-1 at a depth of 12.5 ± 1.0 km below sea level. This depth is similar to that inferred for the brittle-ductile transition zone from a study of local seismicity in the Lake Bogoria region. A high P-wave velocity layer (7.1 ± 0.2 km s-1) occurs at 22 ± 2 km depth below sea level which might be associated with a sill-like basic intrusion in the lower crust. an upper mantle velocity of 7.5 ± 0.2 km s-1 (unreversed) is reached at a depth of 34.0 ± 2.0 km below sea level. This implies that only moderate crustal thinning has occurred beneath the central sector of the rift. No evidence was obtained for the existence of a continuous‘axial intrusion’reaching to shallow levels below the rift and associated with crustal separation as suggested by previous studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 31 (1983), S. 313-326 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: We have constructed a composite image of the fault systems of the M 6.7 San Fernando (1971) and Northridge (1994), California, earthquakes, using industry reflection and oil test well data in the upper few kilometers of the crust, relocated aftershocks in the seismogenic crust, and LARSE II (Los Angeles Region Seismic Experiment, Phase II) reflection data in the middle and lower crust. In this image, the San Fernando fault system appears to consist of a decollement that extends 50 km northward at a dip of 25� from near the surface at the Northridge Hills fault, in the northern San Fernando Valley, to the San Andreas fault in the middle to lower crust. It follows a prominent aseismic reflective zone below and northward of the main-shock hypocenter. Interpreted upward splays off this decollement include the Mission Hills and San Gabriel faults and the two main rupture planes of the San Fernando earthquake, which appear to divide the hanging wall into shingle- or wedge-like blocks. In contrast, the fault system for the Northridge earthquake appears simple, at least east of the LARSE II transect, consisting of a fault that extends 20 km southward at a dip of 33� from 7 km depth beneath the Santa Susana Mountains, where it abuts the interpreted San Fernando decollement, to 20 km depth beneath the Santa Monica Mountains. It follows a weak aseismic reflective zone below and southward of the main-shock hypocenter. The middle crustal reflective zone along the interpreted San Fernando decollement appears similar to a reflective zone imaged beneath the San Gabriel Mountains along the LARSE I transect, to the east, in that it appears to connect major reverse or thrust faults in the Los Angeles region to the San Andreas fault. However, it differs in having a moderate versus a gentle dip and in containing no mid-crustal bright reflections.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Protokoll über das 6. Kolloquium im Schwerpunktprogramm "Vertikalbewegungen und ihre Ursachen am Beispiel des Rheinischen Schildes"
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: The seismic refraction-wide-angle reflection experiments carried out in 1985 and 1990 in the Kenya rift (KRISP '85 and KRISP '90) show major crustal thickness variations both along and across the rift. Along the rift axis crustal thickness varies from 35 km in the south beneath the Kenya dome to 20 km in the north beneath the Turkana region. Due to the distribution of crustal thickness beneath the rift flanks, it can be stated that the major amount of variation in crustal thickness along the rift axis is due to the Tertiary rifting episode. The northwards decrease in crustal thickness can be correlated with changes in surface topography (northwards decrease), rift width (northwards increase), surface estimates of extension (5–10 km in the south and 35–40 km in the north) and Bouguer gravity, the regional northwards increase of which can be explained entirely by the change in crustal thickness. Below the 750 km long axial rift profile, uppermost mantle P(tief)n velocities are low, being 7.5–7.7 km/s. However, under the northern part of the rift two layers with velocities of 8.1 km/s and 8.3 km/s are embedded in the low-velocity mantle material at 40–45 km and 60–65 km depth, respectively. In contrast, the wide-angle data show that beneath the Kenya dome, in the southern part of the rift, low mantle velocities occur down to at least 65 km depth. This mantle velocity structure is indicative of the depth to the onset of melting being at least 65 km beneath the northern part of the rift and thus not being shallower than the depth (45–50 km) to the onset of melting under the Kenya dome to the south. A profile across the rift north of the Kenya dome at the latitude of Lake Baringo shows that the low uppermost mantle P(tief)n velocity of 7.5–7.7 km/s and crustal thinning of 5–10 km is confined to below the surface expression of the rift. An abrupt change in Moho depths and P(tief)n velocities occurs as the rift boundaries are crossed. Beneath the rift flanks, normal P(tief)n velocities of 8.0–8.2 km/s occur. The presence of hot mantle material beneath the Kenya dome since the onset of volcanism here at 15–20 Ma is still compatible with the abrupt change in mantle P-wave velocities as the rift boundaries are crossed. Petrological interpretation of the seismic velocities indicates a few (up to 5) percent basaltic melt in the mantle below the rift except in the two layers with velocities greater than 8.0 km/s under the northern part of the rift where some crystal orientation (anisotropy) is necessary. Below about 45–50 km depth beneath the southern part of the rift the magma could exist as in situ partial melt. The above results, taken together with results from teleseismic studies, petrology and surface geology, indicate anomalously hot mantle material appearing below the present site of the Kenya rift at about 20–30 Ma. The active uprising of this anomalously hot mantle material since this time has given rise to widespread volcanism along the whole length of the rift and has modified the crust beneath the rift by mafic igneous underplating and intrusion, especially into the basal crustal layer. Accompanying the uprise of the anomalously hot mantle material minor crustal extension (5–10 km) has occurred beneath the Kenya dome in the southern part of the rift where crustal thickness is large (35 km). Under the Turkana region in the northern part of the rift, a greater amount of extension (35–40 km) has taken place and the crustal thickness is small (20 km), although the depth to the onset of melting under the northern part of the rift is, if anything, greater than under the southern part of the rift.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-20
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...