GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Vegetation Science, Wiley, Vol. 32, No. 4 ( 2021-07)
    Abstract: Understanding fine‐grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine‐grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m 2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi‐natural) grasslands and natural grasslands are the richest vegetation type. The open‐access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online ( https://edgg.org/databases/GrasslandDiversityExplorer ) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high‐quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation‐plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Vegetation Science, Wiley, Vol. 27, No. 5 ( 2016-09), p. 1036-1046
    Abstract: It is often assumed, but poorly tested, that patterns of phylogenetic diversity reflect functional diversity in plant communities. Here we test whether phylogeny can be used as a proxy for functional diversity in general and specifically for diversity in plant niche preferences, dispersal strategies and competitiveness‐related traits. Location Central Europe, Belgium and the Netherlands. Methods We used a species composition data set from seven urban habitats, each sampled in 32 large cities of ten countries, and combined this with information about species phylogeny and functional traits, the latter divided into categories representing niche preferences, dispersal strategies and competitiveness. Results We found positive significant, yet very weak, relationships between phylogenetic diversity and overall functional diversity, and between phylogenetic diversity and diversity in both species dispersal strategies and competitiveness. The relationship between phylogenetic diversity and diversity in species niche preferences was not significant. Conclusions We suggest that the combination of multiple trait states that co‐exist in urban plant communities and even within the same lineages weakens the phylogeny–function relationship. Phylogenetic diversity is a weak proxy for functional diversity of urban plant communities. For some facets of functional diversity, the phylogeny–function relationship may not apply at all.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Vegetation Science, Wiley, Vol. 25, No. 1 ( 2022-01)
    Abstract: The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science , 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation‐plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular‐plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oikos, Wiley, Vol. 126, No. 5 ( 2017-05), p. 660-670
    Abstract: Soil pH is a key predictor of plant species occurrence owing to its effect on the availability of nutrients and phytotoxic metals. Although regional differences in realized soil pH niche (‘niche shifts’) have been reported since the 19th century, no study has disentangled how they are influenced by spatial differences in substrate availability, macroclimate, and competitors. We linked plot‐level data on species occurrence and measured soil pH from dry grasslands in eight regions across Eurasia (n = 999 plots), spanning a geographic gradient of 6862 km. We calculated regional shifts in niche optimum (D opt ) and width (D width ) for 73 Species × Region 1 × Region 2 combinations (SRRs; 38 study species) using extended Huisman–Olff–Fresco models. Next, we used commonality analysis to partition the contribution of substrate availability, precipitation, and species traits indicative of competitive ability to variation in regional niche shifts. Shifts in optimum were rare (5% of SRRs with D opt ≥ 1 pH units) but many species did not show optima within regions. By contrast, shifts in niche width were common (22% of SRRs with D width ≥1 pH units) and there were pronounced interspecific differences. Whereas none of the three predictors significantly explained shifts in niche optimum, common and unique effects of substrate availability and precipitation accounted for 85% of variation in niche width. Our results suggest that substrate availability and precipitation could be the driving factors behind species regional shifts in niche width. Studies that address additional factors, such as other edaphic niches, and their variability at the regional and micro‐scale will improve our understanding of the mechanisms underlying species distributions.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biologia, Springer Science and Business Media LLC, Vol. 69, No. 2 ( 2014-02), p. 202-213
    Type of Medium: Online Resource
    ISSN: 0006-3088 , 1336-9563
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2252542-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Ecology and Biogeography, Wiley, Vol. 26, No. 4 ( 2017-04), p. 425-434
    Abstract: Soil pH is considered an important driver of fine‐scale plant species richness in terrestrial ecosystems. However, it is unclear to what extent this relationship is influenced by precipitation, which often directly affects both soil pH and species richness. We asked: (1) what is the relationship between fine‐scale vascular plant species richness and soil pH in regions with different levels of precipitation and (2) what are the relative effects of soil pH and precipitation on species richness? Location Dry grasslands in eight regions of northern Eurasia. Methods Species richness and soil pH were measured in 1055 10 m × 10 m plots and precipitation values were derived from global datasets. Relationships between variables were explored using general linear models, mixed‐effect models and partial regressions. Variation partitioning was used to assess the relative effect of each predictor on species richness. Results In wetter regions, soil pH range was broader, mean species richness was higher and the richness–pH relationship was unimodal. In drier regions, mean soil pH was higher and its range narrower, species richness was on average lower and less variable, and the richness–pH relationship was negative or absent. The richness–pH relationship persisted after controlling for the effect of precipitation, but precipitation, uniquely or together with soil pH, explained more variation in species richness in most regions than did pH alone. Main conclusions The relationship between plant species richness and soil pH in dry grasslands changes from unimodal, through negative, to none with decreasing regional precipitation in Eurasia. However, it seems that the species richness–soil pH relationship in dry grasslands over broad areas is substantially influenced and confounded by precipitation either indirectly, by shortening and shifting the pH gradient, or directly, by decreasing the negative effects of drought stress on richness.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecological Indicators, Elsevier BV, Vol. 77 ( 2017-06), p. 357-367
    Type of Medium: Online Resource
    ISSN: 1470-160X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2063587-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied Vegetation Science, Wiley, Vol. 16, No. 4 ( 2013-10), p. 640-649
    Abstract: Diversification of grassland management is recommended as a tool for conservation of different taxonomic groups living in those habitats. How resistant and resilient are species‐rich grasslands in terms of plant species richness and vegetation composition to short‐term, small‐scale perturbations caused by changes in management practice? Location Bílé Karpaty Mountains, SE Czech Republic. Methods The experiment included the effect of six management regimes (mowing in June; mowing in September; mowing in June and September; mowing in June and high stubble left; no management; mowing in June and mulching). It was conducted in species‐rich wooded grasslands in the White Carpathians Mts., Czech Republic, represented by three types of plant community: a Bromus erectus community (with high species richness and low productivity), a Molinia arundinacea community (with high species richness and high productivity), and a Calamagrostis epigejos community (with low species richness and high productivity). After 3 yr, resistance was assessed, and traditional management (mowing once each year in June) was resumed; resilience was evaluated after three more years. Results While the species‐rich, unproductive Bromus community was relatively resistant to less intensive management in terms of species richness, and therefore its resilience could not be assessed, it changed substantially in terms of vegetation composition (maximum dissimilarity between control and abandoned plots was 63%). The more productive Molinia and Calamagrostis communities lost up to 37% of species due to abandonment, but not as a consequence of other changes management regimes. After the traditional management was resumed, resilience was higher in the Calamagrostis community than in the Molinia community. Vegetation composition was not affected by treatments. Conclusions The results show that short‐term abandonment causes loss of plant diversity in productive grasslands but not in less productive, species‐rich grasslands in the short term. Other relaxed management regimes (e.g. high stubble and delayed mowing) were comparable with the control and can be used for a short time to increase diversity of management without an effect on plant species richness. However, further research is needed to assess the effects of these management practices when they are applied repeatedly or over the long term.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Boreas, Wiley, Vol. 48, No. 1 ( 2019-01), p. 36-56
    Abstract: Steppe‐tundra is considered to have been a dominant ecosystem across northern Eurasia during the Last Glacial Maximum. As the fossil record is insufficient for understanding the ecology of this vanished ecosystem, modern analogues have been sought, especially in Beringia. However, Beringian ecosystems are probably not the best analogues for more southern variants of the full‐glacial steppe‐tundra because they lack many plant and animal species of temperate steppes found in the full‐glacial fossil record from various areas of Europe and Siberia. We present new data on flora, land snails and mammals and characterize the ecology of a close modern analogue of the full‐glacial steppe‐tundra ecosystem in the southeastern Russian Altai Mountains, southern Siberia. The Altaian steppe‐tundra is a landscape mosaic of different habitat types including steppe, mesic and wet grasslands, shrubby tundra, riparian scrub, and patches of open woodland at moister sites. Habitat distribution, species diversity, primary productivity and nutrient content in plant biomass reflect precipitation patterns across a broader area and the topography‐dependent distribution of soil moisture across smaller landscape sections. Plant and snail species considered as glacial relicts occur in most habitats of the Altaian steppe‐tundra, but snails avoid the driest types of steppe. A diverse community of mammals, including many species typical of the full‐glacial ecosystems, also occurs there. Insights from the Altaian steppe‐tundra suggest that the full‐glacial steppe‐tundra was a heterogeneous mosaic of different habitats depending on landscape‐scale moisture gradients. Primary productivity of this habitat mosaic combined with shallow snow cover that facilitated winter grazing was sufficient to sustain rich communities of large herbivores.
    Type of Medium: Online Resource
    ISSN: 0300-9483 , 1502-3885
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2028632-6
    detail.hit.zdb_id: 185110-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Boreas, Wiley, Vol. 44, No. 4 ( 2015-10), p. 638-657
    Abstract: Knowledge of present‐day communities and ecosystems resembling those reconstructed from the fossil record can help improve our understanding of historical distribution patterns and species composition of past communities. Here, we use a unique data set of 570 plots explored for vascular plant and 315 for land‐snail assemblages located along a 650‐km‐long transect running across a steep climatic gradient in the Russian Altai Mountains and their foothills in southern Siberia. We analysed climatic and habitat requirements of modern populations for eight land‐snail and 16 vascular plant species that are considered characteristic of the full‐glacial environment of central Europe based on (i) fossil evidence from loess deposits (snails) or (ii) refugial patterns of their modern distributions (plants). The analysis yielded consistent predictions of the full‐glacial central European climate derived from both snail and plant populations. We found that the distribution of these 24 species was limited to the areas with mean annual temperature varying from −6.7 to 3.4 °C (median −2.5 °C) and with total annual precipitation varying from 137 to 593 mm (median 283 mm). In both groups there were species limited to areas with colder and drier macroclimates (e.g. snails Columella columella and Pupilla loessica , and plants Kobresia myosuroides and Krascheninnikovia ceratoides ), whereas other species preferred areas with relatively warmer and/or moister macroclimates (e.g. snails Pupilla turcmenica and P. alpicola , and plants Artemisia laciniata and Carex capillaris ). Analysis of climatic conditions also indicated that distributional shifts of the studied species during the Pleistocene/Holocene transition were closely related to their climatic tolerances. Our results suggest that the habitat requirements of southern Siberian populations can provide realistic insights into the reconstruction of Eurasian, especially central European, glacial environments. Data obtained from modern populations also highlight the importance of wet habitats as refugia in the generally dry full‐glacial landscape.
    Type of Medium: Online Resource
    ISSN: 0300-9483 , 1502-3885
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2028632-6
    detail.hit.zdb_id: 185110-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...