GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Trace elements -- Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (809 pages)
    Ausgabe: 1st ed.
    ISBN: 9780470355091
    DDC: 613.2/85
    Sprache: Englisch
    Anmerkung: Intro -- TRACE ELEMENTS AS CONTAMINANTS AND NUTRIENTS -- CONTENTS -- Foreword -- Preface -- Acknowledgments -- Contributors -- 1 The Biological System of Elements: Trace Element Concentration and Abundance in Plants Give Hints on Biochemical Reasons of Sequestration and Essentiality -- 1. Introduction -- 1.1 Analytical Data and Biochemical Functions -- 2. Materials and Methods -- 2.1 Data Sets of Element Distribution Obtained in Freeland Ecological Studies: Environmental Analyses -- 2.2 Conversion of Data Using Sets of Elements with Identical BCF Values -- 2.3 Definition and Derivation of the Electrochemical Ligand Parameters -- 3. Results -- 3.1 Abundance Correlations Among Essential and Nonessential Elements -- 3.2 (Lack of) Correlation and Differences in Biochemistry -- 3.3 Implication for Biomonitoring: Corrections by Use of Electrochemical Ligand Parameters and BCF-Defined Element Clusters -- 4. Discussion -- 5. Conclusion -- References -- 2 Health Implications of Trace Elements in the Environment and the Food Chain -- 1. Trace Elements Important in Human Nutrition -- 2. The Main Trace Elements: Their Roles and Effects -- 2.1 Arsenic -- 2.2 Cadmium -- 2.3 Chromium -- 2.4 Cobalt -- 2.5 Copper -- 2.6 Fluorine -- 2.7 Iodine -- 2.8 Iron -- 2.9 Lead -- 2.10 Manganese -- 2.11 Mercury -- 2.12 Molybdenum -- 2.13 Nickel -- 2.14 Selenium -- 2.15 Silicon -- 2.16 Tin -- 2.17 Vanadium -- 2.18 Zinc -- 2.19 Hypersensitivity Issues -- 3. Issues of Environmental Contamination of the Food Chain -- 4. Legislation Concerning Trace Elements -- 4.1 Elements in Soils and the Environment -- 4.2 Elements in Foods -- 4.3 Supplementation of Minerals to Foods -- 5. Food Chain Safety -- 5.1 Soil and Plants -- 5.2 Animal Products -- 5.3 Geological Correlates -- 5.4 Intentional Contamination -- 5.5 Availability of Minerals -- 6. Biofortification -- 7. Concluding Remarks. , Acknowledgments -- References -- 3 Trace Elements in Agro-ecosystems -- 1. Introduction -- 2. Biogeochemistry of Trace Elements in Agro-ecosystems -- 2.1 Input and Contamination -- 2.2 Translation, Translocation, Fate, and Their Implication to Phytoremediation -- 3. Benefit, Harmfulness, and Healthy Implication of Trace Elements -- 3.1 Benefit to Plant/Crop -- 3.2 Harmfulness to Plant/Crop Physiology -- 3.3 Soil Environmental Quality Standards and Background of Trace Elements -- 4. Phytoremediation of Trace Element Contamination -- 4.1 Basic Mechanisms of Phytoremediation -- 4.2 Research Progress of Phytoextraction -- 4.3 Discussion on Agro-Strengthen Measurements -- Acknowledgments -- References -- 4 Metal Accumulation in Crops-Human Health Issues -- 1. Introduction -- 2. The Concept of Ionomics and Nutriomics in the Plant Cell -- 3. The Trace Element Deficiencies in the Developing World -- 4. Improvement of Trace Metal Content in Plants Through Genetic Engineering -- 5. Genetic Engineering Approaches to Improve the Bioavailability of Iron and Zinc in Cereals -- 6. Decreasing the Content of Inhibitors of Trace Element Absorption -- 7. Increasing the Synthesis of Promoter Compounds -- 8. Conclusions -- Acknowledgments -- References -- 5 Trace Elements and Plant Secondary Metabolism: Quality and Efficacy of Herbal Products -- 1. Coevolutionary Aspects -- 2. Environmental Factors and Active Principles -- 3. Influence of Macronutrients -- 4. Influence of Micronutrients -- 5. Trace Elements as Elicitors of Active Principles -- 6. Trace Elements as Active Components of Herbal Drugs -- 7. Trace Elements in Herbal Drugs: Regulatory Aspects -- Acknowledgments -- References -- 6 Trace Elements and Radionuclides in Edible Plants -- 1. Introduction -- 2. Plant Uptake and Translocation of Trace Elements. , 3. Distribution and Accumulation of Trace Elements in Plants -- 4. Vegetables, Fruit, and Berries -- 5. Cereals and Grains -- 5.1 Cadmium in Wheat -- 5.2 Arsenic in Rice -- 6. Aquatic Plants -- 7. Fungi -- 8. How to Cope with Low or High Levels of Trace Elements -- References -- 7 Trace Elements in Traditional Healing Plants-Remedies or Risks -- 1. Introduction -- 2. The Indigenous System of Medicine -- 3. Herbal Drug Industry -- 4. Notable Medicinal and Aromatic Plants that have the Inherent Ability of Accumulating Toxic Trace Elements -- 5. Cleanup of Toxic Metals from Herbal Extracts -- 6. Polyherbal Preparation and Traditional Medicine Pharmacology -- 7. Conclusions -- References -- 8 Biofortification: Nutritional Security and Relevance to Human Health -- 1. Introduction -- 2. Bioavailablity of Micronutrients -- 3. Social Acceptability of Biofortified Crops -- 4. Development and Distribution of the New Varieties -- 5. Selected Examples of Biofortified Crops Targeted by Harvestplus in Collaboration with a Consortium of International Partners -- 5.1 Rice -- 5.2 Wheat -- 5.3 Maize -- 5.4 Beans -- 5.5 Brassica juncea (Indian Mustard) -- 6. Selenium-Fortified Phytoproducts -- 7. Sources of Selenium in Human Diet -- 8. Selenium (Se) and Silica (Si) Management in Soils by Fly Ash Amendment -- 9. Chromium for Fortification Diabetes Management -- 10. Silica Management in Rice-Beneficial Functions -- 11. Conclusions -- Acknowledgments and Disclaimer -- References -- 9 Essentiality of Zinc for Human Health and Sustainable Development -- 1. Biogeochemical Cycling of Zinc -- 2. Distribution of Zinc Deficiency in Soils on a Global Level -- 3. Zinc Intervention Programs -- 4. Zinc-Transporting Genes in Plants -- 5. Addressing Zinc Deficiency Without Zinc Fortification -- 6. Zinc Deficiency is a Limitation to Plant Productivity -- Acknowledgments and Disclaimer. , References -- 10 Zinc Effect on the Phytoestrogen Content of Pomegranate Fruit Tree -- 1. Introduction -- 2. Materials and Methods -- 3. Results and Discussions -- 3.1 Pomegranate Yield -- 3.2 Pomegranate Zinc Content -- 3.3 Phytoestrogen Content -- 4. Summary and Conclusions -- Acknowledgments -- References -- 11 Iron Bioavailability, Homeostasis through Phytoferritins and Fortification Strategies: Implications for Human Health and Nutrition -- 1. Introduction -- 2. Iron Importance -- 3. Iron Toxicity -- 4. Interactions with Other Metals -- 5. Iron Acquisition by Plants -- 6. Translocation of Iron in Plants -- 7. Iron Deficiency in Humans -- 8. Amelioration of Iron Deficiencies -- 9. Ferritin -- 10. Ferritin Structure -- 11. Mineral Core Formation -- 12. Ferritin Gene Family and Regulation -- 13. Developmental Regulation -- 14. Role of Ferritin -- 15. Metal Sequestration by Ferritin: Health Implications -- 16. Overexpression of Ferritin -- Acknowledgments -- References -- 12 Iodine and Human Health: Bhutan's Iodine Fortification Program -- 1. Role of Iodine -- 2. Iodine Deficiency Disorders (IDD) -- 3. Sources of Iodine -- 4. Recommended Intake of Iodine -- 5. Indicators for Assessment of Iodine Status and Exposure -- 6. Control of IDD -- 7. IDD Scenario in Bhutan: Past and Present -- 8. Toward IDD Elimination in Bhutan: Highlights of the IDD Control Program -- 8.1 IDD Survey -- 9. 1996 Onward: Internal Evaluation of the IDDCP through Cyclic Monitoring -- 10. Conclusion -- References -- 13 Floristic Composition at Kazakhstan's Semipalatinsk Nuclear Test Site: Relevance to the Containment of Radionuclides to Safeguard Ecosystems and Human Health -- 1. Introduction -- 2. Kazakhstan: Semipalatinsk Nuclear Test Site -- 3. Flora of Nuclear Test Site -- 4. Fodder Plants -- 5. Conclusions -- Acknowledgments and Disclaimer -- References. , 14 Uranium and Thorium Accumulation in Cultivated Plants -- 1. Introduction: Uranium and Thorium in the Environment -- 2. Uranium and Thorium in Soil -- 2.1 Soil Characteristics Affecting Uranium and Thorium Plant Uptake -- 2.2 Effects of Soil Amendments -- 3. Radionuclides in Plants -- 3.1 Accumulation of Uranium and Thorium in Plant Roots -- 3.2 Differences in U and Th Uptake by Different Plant Species (in the example of wheat Triticum aestivum and Rye Secale cereale) -- 3.3 Effects of U and Th Bioaccumulation on Distribution of Other Elements in Rye and Wheat -- 3.4 Relationships Between U and Th in Soils and in Different Plant Parts -- 3.5 Phytotoxicity of U and Th -- 3.6 Effects of U and Th on Leaf Chlorophyll Content and the Rhizosphere Microorganisms -- 3.7 Temporal Variations of U and Th in Plants -- 3.8 Effects of Thorium on a Plant During Initial Stages of the Plant Growth -- 4. Potential Health Effects of Exposure to U and Th -- References -- 15 Exposure to Mercury: A Critical Assessment of Adverse Ecological and Human Health Effects -- 1. Human Health Effects -- 1.1 Introduction -- 1.2 Sources and Cycling of Mercury to the Global Environment -- 1.3 Methylmercury -- 2. Adverse Ecological Effects -- 2.1 Laboratory Toxicity Studies -- 2.2 Biochemical Approaches to Study Bioavailability and Effects -- 2.3 Methods -- 2.4 Results and Discussion -- 3. Case Study: Mercury-Cell Chlor-Alkali Plants as a Major Point Sources of Mercury in Aquatic Environments-The Case of Cinca River, Spain -- 3.1 Introduction -- 3.2 The Case of Mercury Pollution in Cinca River, Spain -- References -- 16 Cadmium as an Environmental Contaminant: Consequences to Plant and Human Health -- 1. Introduction -- 2. Cadmium is Natural -- 3. Past and Present Status -- 3.1 Natural Sources -- 3.2 Technogenic Sources -- 3.3 In Agricultural Soils: Cadmium from Phosphate Fertilizers. , 3.4 Induction of Oxidative Stress as a Fall-Out of Cadmium Toxicity.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Natural resources-Management. ; Natural resources-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (465 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323952798
    DDC: 333.7
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Water-Microbiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (530 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128187845
    DDC: 576.19200000000001
    Sprache: Englisch
    Anmerkung: Front Cover -- Waterborne Pathogens -- Waterborne Pathogens -- Copyright -- Contents -- Contributors -- About the editors -- Professional experience -- Academic honors -- Visiting assignments in various universities-widely traveled -- Preface -- Acknowledgments -- 1 - Emerging waterborne pathogens in the context of climate change: Vibrio cholerae as a case study -- 1. Introduction -- 2. Vibrio cholerae and its environmental reservoir -- 3. Attachment -- 4. Viability of the bacterium through the interepidemic period -- 5. Cyanobacterial reservoir and the seasonality of cholera: the Bangladesh model -- 6. Transmission of cholera during epidemics -- 7. Impact of climate on cholera -- 8. Conclusion -- References -- 2 - Ubiquitous waterborne pathogens -- 1. Introduction -- 2. Waterborne pathogens -- 2.1 Waterborne bacteria -- 2.1.1 The genus Vibrio -- 2.1.2 The genus Salmonella -- 2.1.3 The genus Shigella -- 2.1.4 The genus Escherichia -- 2.1.5 The genus Burkholderia -- 2.1.6 The genus Campylobacter -- 2.1.7 The genus Francisella -- 2.1.8 The genus Legionella -- 2.1.9 Mycobacterium avium complex -- 2.2 Waterborne viruses -- 2.2.1 Adenoviruses -- 2.2.2 Astroviruses -- 2.2.3 Caliciviruses -- 2.2.4 Noroviruses -- 2.2.5 Sapoviruses -- 2.2.6 Enteroviruses -- 2.2.7 Hepatovirus A -- 2.2.8 Hepatovirus E -- 2.2.9 Rotaviruses -- 2.3 Waterborne protozoa -- 2.3.1 The genus Cryptosporidium -- 2.3.2 The genus Giardia -- 2.3.3 Entamoeba histolytica -- 2.4 Waterborne helminths -- 2.4.1 The genus Dracunculus -- 2.4.2 The genus Fasciola -- 3. Potential waterborne pathogens -- 3.1 Potential waterborne bacteria -- 3.1.1 Helicobacter pylori -- 3.1.2 Aeromonas hydrophila -- 3.1.3 The genus Leptospira -- 3.1.4 The genus Tsukamurella -- 3.1.5 The genus Bacillus -- 3.1.6 Cyanobacteria and cyanotoxins -- 3.2 Potential waterborne viruses -- 3.3 Potential waterborne protozoa. , 3.3.1 Microsporidia -- 3.3.2 Cystoisospora belli -- 3.3.3 Cyclospora cayetanensis -- 3.4 Potential waterborne helminths -- 3.4.1 The genus Schistosoma -- 4. Summary -- Acknowledgment -- References -- 3 - Waterborne pathogens: review of outbreaks in developing nations -- 1. Introduction -- 2. Waterborne pathogen outbreaks in developing countries -- 3. WASH and waterborne disease outbreaks -- 4. Water quality: contribution to disease -- 5. Groundwater quality -- 6. Intervention efforts -- 7. Conclusion -- References -- 4 - Treatment of waterborne pathogens by reverse osmosis -- 1. Treatment of waterborne pathogens by reverse osmosis -- 1.1 Types of waterborne pathogens -- 1.2 Pathogen control in drinking water -- 1.3 Reverse osmosis -- 1.3.1 Basic terms and definition -- 1.3.1.1 Basic requirements for membrane materials -- 1.3.1.2 Pretreatment -- 1.3.1.3 Configuration of the reverse osmosis process -- 1.3.1.4 Membrane -- 1.3.1.5 Materials used for membrane -- 1.4 Removals of waterborne by reverse osmosis -- 2. Conclusion -- References -- 5 - Treatment of waterborne pathogens by microfiltration -- 1. Treatment of waterborne pathogens by microfiltration -- 1.1 Overview of waterborne pathogens -- 1.2 Microfiltration versus conventional filtration -- 1.2.1 Advantages and disadvantages of conventional filtration for waterborne pathogens removal -- 1.3 Microfiltration -- 1.3.1 Mass transport in the microfiltration process -- 1.4 Waterborne pathogens removal by microfiltration -- 2. Summary and conclusions -- References -- 6 - Filtration and chemical treatment of waterborne pathogens -- 1. Introduction -- 2. Waterborne pathogens and types of diseases -- 3. Source and transmission of waterborne pathogens -- 4. Filtration and chemical treatment -- 4.1 Filtration methods for treatment of pathogens -- 4.1.1 Household and small-scale water treatment. , 4.1.2 Drinking water treatment in plants/industries -- 4.1.3 Wastewater treatment in plant/industries -- 4.2 Chemical methods for treatment of pathogens -- 4.2.1 Chemical pretreatment -- 4.2.2 Chemical coagulation -- 4.2.3 Chemical disinfection -- 5. Conclusions and future scope -- References -- 7 - Biofiltration technique for removal of waterborne pathogens -- 1. Introduction -- 2. Waterborne disease -- 2.1 Log removal -- 2.2 Turbidity -- 3. Biofiltration -- 3.1 Trickling filter -- 3.2 Slow sand ltration -- 3.3 Rapid sand filter -- 3.4 Stormwater biofilter -- 3.4.1 Submerged zone -- 3.4.2 Removal of pathogenic bacteria in stormwater biofilter -- 3.5 Biofilter design consideration for removal of microbial contaminants -- 3.5.1 Filter media -- 3.5.2 Amendments of filter media -- 3.5.3 Surface modification of filter media -- 3.5.4 Biofilm -- 3.5.5 Infauna -- 3.5.6 Vegetation -- 3.6 Microbial-earthworm ecofilters -- 4. Conclusion -- References -- 8 - Thermal methods, ultraviolet radiation, and ultrasonic waves for the treatment of waterborne pathogens -- 1. Introduction -- 2. Thermal methods -- 3. The application of ultraviolet radiation -- 3.1 Basis of the process -- 3.2 The intensity of radiation and its dose -- 3.3 The required ultraviolet dose -- 3.4 Ultraviolet reactors -- 4. The application of solar disinfection -- 4.1 The basis of the process -- 4.2 Inactivation of microbes -- 4.3 The factors affecting the effectiveness of the process -- 4.4 Technological solutions -- 5. The application of ultrasonic waves -- 6. Summary -- References -- 9 - Heat, solar pasteurization, and ultraviolet radiation treatment for removal of waterborne pathogens -- 1. Introduction -- 2. Heat treatment -- 2.1 Critical temperature and efficacy of boiling -- 2.2 Advantages and disadvantages -- 2.3 Combination with other techniques -- 3. Solar pasteurization. , 3.1 Batch system -- 3.2 Continuous flow-through system -- 4. Ultraviolet radiation -- 4.1 Electromagnetic spectrum of ultraviolet light and microbial inactivation -- 4.2 Ultraviolet disinfection instrument -- 4.2.1 Mercury-based ultraviolet lamps -- 4.2.2 Mercury-free ultraviolet lamps -- 4.3 Factors affecting ultraviolet disinfection -- 4.4 Advantages and disadvantages -- 5. Future scope -- 6. Conclusion -- References -- 10 - Bioaugmentation for the treatment of waterborne pathogen contamination water -- 1. Introduction -- 2. Biological control of Legionella pneumophila-a most tracked waterborne pathogens in man-made water systems -- 2.1 Selection of anti-Legionella compounds producers -- 2.2 Biological molecules showing anti-Legionella activity -- 3. Antagonistic microbial strains as biological pesticides for lethal pathogenic microbes -- 3.1 Microbial consortium for optimum pollutant and pathogen removal -- 4. Bacteriophage for pathogen reduction in wastewater -- 4.1 Role of phage to control waterborne bacterial pathogens -- 4.2 Phage in wastewater treatment -- 5. Pathogen bacteria removal in constructed wetlands -- 5.1 Selection of antagonistic bacteria for removal of waterborne pathogens -- 6. Conclusion -- References -- Further reading -- 11 - Chemical treatment for removal of waterborne pathogens -- 1. Introduction -- 2. Regulated chemicals -- 3. Water treatment plants and its significance -- 3.1 The disinfection of drinking water -- 3.2 General overview of the water treatment -- 4. Raw water quality and disinfectant demand -- 5. Microbiological deliberation for disinfection and indicator organism -- 6. Conventional method of treatment -- 6.1 Physical and chemical treatments -- 6.2 Particulates aggregates and residuals -- 6.3 Chlorine -- 6.4 Effectiveness of chlorination on protozoa, bacteria, and virus and residues. , 6.5 Chloramine-based disinfection -- 6.6 Effectiveness and by-product of chloramine -- 6.7 Chlorine dioxide and effectiveness -- 6.8 Ozone -- 6.9 Ultraviolet disinfection -- 6.10 Human health and ecological effect -- 7. Conclusion -- References -- Further reading -- 12 - Molecular tools for the detection of waterborne pathogens -- 1. Introduction -- 2. Commonly encountered pathogens in water -- 2.1 Bacteria -- 2.2 Protozoa -- 2.3 Virus -- 3. Major types of detection platforms for the detection of waterborne pathogens -- 3.1 Luminescent molecular markers -- 3.2 Polymerase chain reaction-based molecular tools -- 3.3 Electrochemical sensors -- 3.4 Enzyme-linked immunosorbent assay -- 3.5 Magnetic biosensors -- 3.6 Designer "lab-on-a-chip" biosensor -- 3.7 Smartphone-based rapid monitoring system -- 4. Sensors and molecular tools in waterborne pathogens detection: where do we stand today? -- 4.1 Benefits -- 4.2 Limitations -- 4.3 Future prospects -- 5. Conclusion -- References -- Further reading -- 13 - Biosensors/molecular tools for detection of waterborne pathogens -- 1. Biosensors -- 1.1 Types of biosensors -- 1.1.1 Optical biosensors -- 1.1.1.1 Surface plasmon resonance biosensors -- 1.1.1.2 Evanescent field-based fiber optic biosensors -- 1.1.1.3 Fluorescence and chemiluminescence biosensors -- 1.1.1.4 Colorimetric biosensors -- 1.1.2 Piezoelectric biosensors (acoustic wave-based biosensors/mass sensitive detectors) -- 1.1.3 Electrochemical biosensors -- 2. Molecular methods -- 2.1 Different molecular methods of pathogen detection -- 2.1.1 Polymerase chain reaction and variants -- 2.1.1.1 Multiplex PCR and real-time PCR -- 2.1.2 Oligonucleotide DNA microarrays -- 2.1.3 Next-generation sequencing -- 2.1.4 Pyrosequencing -- 2.1.5 Fluorescence in situ hybridization -- 2.1.6 Immunology-based methods -- 3. Conclusion -- References. , 14 - Drug and multidrug resistance in waterborne pathogens.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Microplastics-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (531 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119879527
    DDC: 363.738
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Section I Single Use Plastics -- Chapter 1 Scientometric Analysis of Microplastics across the Globe -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.3.1 Trends in Scientific Production and Citations -- 1.3.2 Top Funding Agencies -- 1.3.3 Top 10 Global Affiliations -- 1.3.4 Top Countries -- 1.3.5 Top 10 Databases and Journals -- 1.3.6 Top 10 Published Articles -- 1.3.7 Top 10 Author Keywords and Research Areas -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Microplastic Pollution in the Polar Oceans - A Review -- 2.1 Introduction -- 2.1.1 Plastics -- 2.1.2 Plastic Pollution -- 2.1.3 Microplastics -- 2.1.4 Importance of Microplastic Pollution in the Polar Oceans -- 2.2 Polar Regions -- 2.2.1 General -- 2.2.2 Sea Ice -- 2.2.3 Water -- 2.2.4 Sediments -- 2.2.5 Biota -- 2.3 Future Perspectives -- 2.4 Conclusions -- References -- Chapter 3 Microplastics - Global Scenario -- 3.1 Introduction -- 3.2 Environmental Issues of Plastic Waste -- 3.3 Coprocessing of Plastic Waste in Cement Kilns -- 3.3.1 Cost of Plants to Convert Plastic Waste to Refused-Derived Fuel (RDF) -- 3.4 Disposal of Plastic Waste Through Plasma Pyrolysis Technology (PPT) -- 3.4.1 Merits of PPT -- 3.5 Constraints on the Use of Plastic Waste Disposal Technologies -- 3.6 Alternate to Conventional Petro-based Plastic Carry Bags and Films -- 3.7 Improving Waste Management -- 3.7.1 Phasing Out Microplastics -- 3.7.2 Promoting Research into Alternatives -- 3.7.3 Actions and Resolutions -- References -- Chapter 4 The Single-Use Plastic Pandemic in the COVID-19 Era -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Data Sources -- 4.2.2 Estimation of the General population's Daily Use of Face Masks. , 4.2.3 Estimation of the Daily Amount of Medical Waste in Hospitals -- 4.3 Trends in Production and Consumption of SUPs during the Pandemic -- 4.3.1 Personal Protective Equipment -- 4.3.2 Packaging SUPs -- 4.3.2.1 Trends in Plastic Waste Generation, Management, and Environmental Fate during the COVID-19 Era -- 4.4 SUP Waste from the Pandemic -- 4.4.1 Environmental Impacts from SUP Waste -- 4.4.2 Management of SUP Waste -- 4.5 Conclusions and Future Prospects -- References -- Section II Microplastics in the Aerosphere -- Chapter 5 Atmospheric Microplastic Transport -- 5.1 The Phenomenon of Microplastic Transport -- 5.2 Factors Affecting Microplastic Transport -- 5.2.1 Types of MPs -- 5.2.2 Characteristics and Sources of Microplastics Emitters -- 5.2.3 Meteorological Conditions -- 5.2.4 Altitude and Surface Roughness -- 5.2.5 Microplastic Deposition Processes in the Ocean -- 5.2.6 Microplastics Deposition Processes in the Air -- 5.3 Microplastic Transport Modelling -- 5.3.1 Eulerian Method -- 5.3.2 Lagrangian Method -- References -- Chapter 6 Microplastics in the Atmosphere and Their Human and Eco Risks -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.2.1 Size, Shapes, and Colours -- 6.2.2 Chemical Composition -- 6.2.3 Sources of Microplastics -- 6.2.4 Spatial Distribution and Rate of Deposition -- 6.2.5 Effects of Climatic Conditions on MP Distribution -- 6.2.6 Transport Pathways -- 6.2.7 Pollutants Associated with MPs -- 6.3 Impact of Microplastics on Human Health and the Eco Risk -- 6.3.1 Impact on Human Health -- 6.3.2 Eco Risk -- 6.4 Strategies to Minimise Atmospheric MPs through Future Research -- 6.5 Conclusion -- Acknowledgements -- References -- Chapter 7 Sampling and Detection of Microplastics in the Atmosphere -- 7.1 Introduction -- 7.2 Classification -- 7.3 Sampling Microplastics -- 7.3.1 Sampling Airborne Microplastics. , 7.3.2 Sediment -- 7.3.3 Water -- 7.3.4 Biota -- 7.4 Sample Preparation -- 7.5 Detection and Characterisation of MPs in the Atmosphere -- 7.5.1 Microscopic Techniques for Detecting MPs -- 7.5.1.1 Stereomicroscopy -- 7.5.1.2 Fluorescence Microscopy -- 7.5.1.3 Polarised Optical Microscopy (POM) -- 7.5.1.4 Scanning Electron Microscopy (SEM) -- 7.5.1.5 Atomic Force Microscopy (AFM) -- 7.5.1.6 Hot Needle Technique -- 7.5.1.7 Digital Holography -- 7.5.2 Spectroscopic Techniques for Analysing MPs -- 7.5.2.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.5.2.2 Raman Spectroscopy -- 7.5.3 Thermal Analysis -- 7.5.3.1 Differential Scanning Calorimetry (DSC) -- 7.5.3.2 Thermogravimetric Analysis (TGA) -- 7.5.3.3 Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) -- 7.6 Conclusion -- Funding -- References -- Chapter 8 Sources and Circulation of Microplastics in the Aerosphere - Atmospheric Transport of Microplastics -- 8.1 Introduction -- 8.1.1 Occurrence and Abundance of Atmospheric MP -- 8.1.2 Plastic Polymers and Their Properties -- 8.1.3 Sources and Pathways of MPs in the Atmosphere -- 8.2 Temporal and Spatial Trends in MP Accumulation -- 8.2.1 Roadside MPs -- 8.2.2 Agricultural Fields and Soil -- 8.2.3 Wastewater and Sludge -- 8.2.4 Ocean/Marine Debris -- 8.3 Formation of MPs -- 8.3.1 Physical Weathering -- 8.3.2 Chemical Weathering -- 8.3.3 Biodegradation -- 8.3.4 Photo-thermal Oxidation -- 8.3.5 Thermal Degradation -- 8.4 Atmospheric Circulation, Transport, Suspension, and Deposition -- 8.4.1 Wet Deposition -- 8.4.2 Dry Deposition -- 8.4.3 Urban Dust -- 8.4.4 Suspended Atmospheric MPs -- 8.5 Atmospheric Chemistry of MPs -- 8.6 Predicting MP Dispersion and Transport -- 8.7 Eco-Environmental Impacts -- 8.7.1 Impacts on Human and Wildlife Health -- 8.7.2 Impacts on the Climate -- 8.8 Future Perspectives -- References. , Section III Microplastics in the Aquatic Environment -- Chapter 9 Interaction of Chemical Contaminants with Microplastics -- 9.1 Introduction -- 9.2 Interactions -- 9.3 Mechanisms -- 9.3.1 Interactions between Organic Contaminants and Microplastics -- 9.3.2 Interactions between Heavy Metals and Microplastics -- 9.3.3 Kinetics of the Sorption Process -- 9.3.4 Pseudo-First-Order Model -- 9.3.5 Pseudo-Second-Order Model -- 9.3.6 Intraparticle Diffusion Model -- 9.3.7 Film Diffusion Model -- 9.3.8 Isotherm Models -- 9.3.9 Langmuir Model -- 9.3.10 Freundlich Model -- 9.4 Environmental Burden of Microplastics -- 9.5 Future Approaches -- References -- Chapter 10 Microplastics in Freshwater Environments -- 10.1 Introduction -- 10.2 Microplastics in Rivers and Tributaries -- 10.3 Microplastics in Lakes -- 10.4 Microplastics in Groundwater Sources -- 10.5 Microplastics in Glaciers and Ice Caps -- 10.6 Microplastics in Deltas -- 10.7 Conclusion -- Acknowledgment -- References -- Chapter 11 Microplastics in Landfill Leachate: Flow and Transport -- 11.1 Plastics and Microplastics -- 11.2 Microplastics in Landfill Leachate -- 11.3 Summary -- Acknowledgments -- References -- Chapter 12 Microplastics in the Aquatic Environment - Effects on Ocean Carbon Sequestration and Sustenance of Marine Life -- 12.1 Introduction -- 12.2 Microplastics in the Aquatic Environment -- 12.2.1 Major Sources -- 12.2.2 Chemical Nature and Distribution Processes -- 12.2.2.1 Chemical Nature -- 12.2.2.2 Distribution Processes -- 12.3 Microplastics and Ocean Carbon Sequestration -- 12.3.1 Ocean Carbon Sequestration -- 12.3.2 Effect of Microplastics on Ocean Carbon Sequestration -- 12.3.2.1 Effect on Phytoplankton Photosynthesis and Growth -- 12.3.2.2 Effect on Zooplankton Development and Reproduction -- 12.3.2.3 Effect on the Marine Biological Pump -- 12.4 Microplastics and Marine Fauna. , 12.4.1 Effects on Corals -- 12.4.2 Effects on Fisheries and Aquaculture -- 12.4.2.1 Shrimp -- 12.4.2.2 Oysters and Mussels -- 12.4.2.3 Fish -- 12.4.3 Effects on Sea Turtles and Sea Birds -- 12.4.4 Effects on Marine Mammals -- 12.5 Microplastic Pollution, Climate Change, and Antibiotic Resistance - A Unique Trio -- 12.6 Conclusion and Future Perspectives -- Acknowledgments -- References -- Section IV Microplastics in Soil Systems -- Chapter 13 Entry of Microplastics into Agroecosystems: A Serious Threat to Food Security and Human Health -- 13.1 Introduction -- 13.2 Sources of Microplastics in Agroecosystems -- 13.2.1 Plastic Mulching -- 13.2.2 Plastic Use in Modern Agriculture -- 13.2.3 Application of Sewage Sludge/Biosolids -- 13.2.4 Compost and Fertilizers -- 13.2.5 Wastewater Irrigation -- 13.2.6 Landfill Sites -- 13.2.7 Atmospheric Deposition -- 13.2.8 Miscellaneous Sources -- 13.3 Implications of Microplastic Contamination on Agroecosystems -- 13.3.1 Implications for Soil Character -- 13.3.2 Implications for Crop Plants and Food Security -- 13.4 Human Health Risks -- 13.5 Knowledge Gaps -- 13.6 Conclusion and Future Recommendations -- Acknowledgments -- References -- Chapter 14 Migration of Microplastic-Bound Contaminants to Soil and Their Effects -- 14.1 Introduction -- 14.2 Microplastics as Sorbing Materials for Hazardous Chemicals -- 14.3 Types of Microplastic-Bound Contaminants in Soils -- 14.3.1 Heavy Metals and Metalloids - Inorganic Contaminants Adsorbed to MPs -- 14.3.2 Persistent Organic Pollutants, Pharmaceuticals, Antibiotics, Pesticides, and Other Organic Contaminants Adsorbed to MPs -- 14.4 Effects of Exposure and Co-exposure in Soil - Consequences of Contaminant Sorption for MP Toxicity and Bioaccumulation -- 14.5 Microplastic-Bound Contaminants in Soils as Potential Threats to Human Health -- 14.6 Conclusions -- References. , Chapter 15 Plastic Mulch-Derived Microplastics in Agricultural Soil Systems.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Environmental health. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (403 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119867357
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Section 1 Geochemistry and Health -- Chapter 1 Medical Geology: Biosphere, Geosphere, and Noosphere Interface -- 1.1 Introduction -- 1.2 Medical Geology in Russia and Newly Independent States (NIS) -- 1.2.1 Linking Geology to Soils - Minerals and HealthCare (Medicine) -- 1.3 Medicinal Value of Metals in Ancient Indian System of Medicine (After Charaka Samhita) -- 1.3.1 Parada (Mercury) -- 1.3.2 Swarna (Gold) Bhasma -- 1.3.3 Rajata (Silver) Bhasma -- 1.3.4 Tamra (Copper) Bhasma -- 1.3.5 Aayasa or Loha (Iron) -- 1.3.6 Mandura Bhasma -- 1.3.7 Naga/Sisaka (lead) Bhasma -- 1.3.8 Vanga/Trapu (tin) Bhasma -- 1.3.9 Pittala (Brass) -- 1.4 Linking Geology to Medicine? -- 1.5 Mineral-Enriched Yeast: Vehicles of Nutrition -- 1.6 Trace Elements/Functional Foods -- 1.6.1 Antidiabetic Plants - The Chromium Connection -- 1.6.2 Lithium -- 1.7 Public Health Informatics (PHI) -- 1.7.1 Medicinal-Mineral Resources -- 1.7.2 Balneotherapy -- 1.8 Use of Clay Minerals in Water Purification -- 1.9 Bathing in Radioactive Monazite-Rich Sands -- Glossary -- References -- Chapter 2 Biogeochemistry: Essential Link Between Geosphere and Biosphere -- 2.1 Introduction to Biogeochemistry -- 2.2 Geosphere: Formation, Evolution, and Isotopes -- 2.2.1 Evolution of the Geosphere -- 2.3 Biosphere -- 2.3.1 Evolution of the Biosphere -- 2.3.2 Bacteria: The Most Primitive Organisms on Earth -- 2.4 Natural Biogeochemistry Cycles (C, N, P, and S) -- 2.4.1 Carbon Cycle -- 2.4.2 Nitrogen Cycle -- 2.4.3 Phosphorous Cycle -- 2.4.4 Sulfur Cycle -- 2.5 Artificial Biogeochemistry Cycles -- 2.6 Soil Biogeochemistry -- 2.6.1 Introduction to Soil Biogeochemistry -- 2.6.2 Soil Formation and Evolution -- 2.6.3 Soil and Ecosystem Balancing. , 2.7 Impact of Natural and Anthropogenic Activities on Biogeochemical Processes -- 2.7.1 Landslide -- 2.7.2 Volcanic Eruptions -- 2.7.3 Industrial Activities -- 2.7.4 Intensive Agriculture -- 2.7.5 Greenhouse Gas Emissions -- 2.7.6 Ocean Acidification -- 2.8 Conclusion and Future Perspectives -- References -- Chapter 3 Geochemical Release and Environmental Interfaces -- 3.1 Introduction -- 3.1.1 Mineral Release -- 3.1.2 Gas Release -- 3.2 Environmental Interfaces -- 3.2.1 Atmospheric Aerosol Interface -- 3.2.2 Nanomaterial Interfaces -- 3.2.3 Effect of Geochemical Release on Environmental Interfaces -- 3.2.4 Benefits of Geochemical Releases on Environment -- References -- Section 2 Dust Storms and Health -- Chapter 4 Minerogenic Dust and Human Health -- 4.1 Introduction -- 4.2 Tree "Bark Pockets" as Pollution Time Capsules -- 4.3 Asbestosis -- 4.4 Phosphogypsum Dust (Anthropogenic Radioactivity) -- 4.5 Silicosis -- 4.6 Volcanic Ash -- 4.7 Dust and Gases from Volcanic Eruptions -- 4.8 Artisanal and Small-Scale Gold Mining Activities in Nigeria -- Acknowledgments -- References -- Chapter 5 Silicosis and Asbestosis -- 5.1 Introduction -- 5.2 Silicosis -- 5.2.1 Structure and Properties of Silica -- 5.2.2 Environmental Occurrence of Silica -- 5.2.3 Industrial Applications and Human Exposure to Silica -- 5.2.4 Silicosis and Its Pathologic Mechanisms -- 5.2.5 Prevention and Treatment of Silicosis -- 5.3 Asbestosis -- 5.3.1 Structure of Asbestos -- 5.3.2 Properties of Asbestos -- 5.3.3 Sources of Asbestos Fiber -- 5.4 Industrial Application -- 5.5 Exposure to Mineral Fiber -- 5.6 Disease Description and Mechanisms of Action -- 5.7 Prevention and Treatment Plans -- References -- Chapter 6 Radon and Health -- 6.1 Introduction -- 6.2 Radon Chemistry -- 6.3 Sources of Radon -- 6.4 Radon Measurement Units -- 6.5 Safe Radon Levels -- 6.6 Radon Detection Methods. , 6.7 Detection of Radon and Radon Decay Products by Grab Sampling Method -- 6.7.1 Ionization Chambers -- 6.7.2 Scintillation Cell Method -- 6.7.3 Liquid Scintillation Counting (LSC) -- 6.7.4 Gross Alpha Counting -- 6.7.5 Alpha Spectrometry -- 6.8 Detection of Radon and Radon Decay Products by Integrated Measurement Methods -- 6.8.1 Solid-State Nuclear Track Detector -- 6.8.2 Activated Carbon Method -- 6.8.3 Electret-Ionization Chamber (EIC) Method -- 6.8.4 Solid-State Detection Monitors -- 6.9 Detection of Radon and Radon Decay Products by Continuous Monitors -- 6.9.1 Continuous Scintillation Cell Monitor -- 6.9.2 Passive Continuous Radon Monitor -- 6.9.3 Continuous Radon Monitors for Radon Progeny -- 6.10 Health Effects of Radon -- 6.10.1 Lung Cancer -- 6.10.2 Leukemia -- 6.10.3 Skin Cancer -- 6.10.4 Circulatory System Diseases (CSDs) -- 6.11 Prevention and Mitigation of Radon in Indoor Settings -- 6.12 Conclusion -- References -- Section 3 Medical Geology of the Hydrosphere -- Chapter 7 Water-Rock Interactions: Mineral Dissolution -- 7.1 Introduction -- 7.2 Congruent (Simple) Dissolution -- 7.2.1 Simple Dissolution of Minerals in Groundwater System -- 7.2.2 Saturation Index -- 7.2.3 Chemical Evolution of Groundwater Controlled by Congruent Dissolution -- 7.3 Incongruent Dissolution -- 7.3.1 Incongruent Dissolution in Aquifer Systems -- 7.3.2 Weathering of Silicates -- 7.3.3 Consequence of Incongruent Dissolution of Silicates -- 7.4 Reductive Dissolution of Fe(III) Oxides -- 7.4.1 Fe(III) Oxide Mineral and Reductive Dissolution -- 7.4.2 Cause of Reductive Dissolution of Fe(III) Oxides -- 7.4.3 Consequence of Reductive Dissolution of Fe(III) Oxides -- 7.5 Conclusion Remarks -- Acknowledgments -- References -- Chapter 8 Water Hardness and Health -- 8.1 Water Hardness - Overview -- 8.2 Origin of Water Hardness. , 8.3 Water Hardness and Health Influence - Background -- 8.3.1 Cardiovascular Diseases and Water Hardness -- 8.3.2 Prevention Mechanism of CVD by Water Hardness -- 8.3.3 Kidney Disease and Water Hardness -- 8.3.4 Protective Competence of the Hard Water Against Cancer Development -- 8.3.5 Calcium and Magnesium Intake and Other Health Effects -- 8.3.6 Physiological Significance of Magnesium -- 8.3.7 Health Drawbacks of Water Hardness -- 8.4 Mitigation of Water Hardness -- 8.5 Conclusions -- References -- Chapter 9 Geochemistry of Fluoride in the Environment and Human Health -- 9.1 Introduction -- 9.2 Geochemistry of Fluoride -- 9.3 Fluoride in Rocks -- 9.4 Fluoride in Soil -- 9.5 Fluoride in Plants -- 9.6 Fluoride in Natural Water -- 9.7 Fluoride and Human Health -- 9.8 Conclusions -- Acknowledgments -- References -- Chapter 10 Iodine Essentiality for Human Health: Sources, Toxicity, Biogeochemistry, and Strategies for Alleviation of Iodine Deficiency Disorders -- 10.1 Introduction -- 10.2 Iodine Essentiality for Human Health -- 10.3 Role of Iodine in Thyroid Function -- 10.4 Iodine Sources in Biogeosphere and Hydrosphere -- 10.5 Iodine in Diets -- 10.6 Iodine in Watersheds -- 10.7 Iodine Deficiency Disorders -- 10.8 Biogeochemical Cycling of Iodine -- 10.9 Conclusions -- Acknowledgments -- References -- Chapter 11 Understanding Nexus Between Hydrogeochemical Cycling and Medical Geology of Arsenic -- 11.1 Introduction -- 11.2 What Is Medical Geology? -- 11.3 Arsenic Release Mechanisms -- 11.4 Exposure and Effects of As on Humans and Plants -- 11.5 Conclusions and Outlooks -- Acknowledgments -- References -- Chapter 12 Potentially Toxic Metals and Health -- 12.1 Introduction -- 12.2 Toxic Metals and Their Resources -- 12.2.1 Arsenic (As) -- 12.2.2 Cadmium (Cd) -- 12.2.3 Chromium (Cr) -- 12.2.4 Lead (Pb) -- 12.3 The Effects of Toxic Metals on Human Health. , 12.4 Toxic Metal Removal with Biochar Adsorption -- 12.5 Conclusions and Recommendations -- References -- Section 4 Medical Pedology: Health Effects from Soils and Sediments -- Chapter 13 Dynamics of Trace Element Bioavailability in Soil: Agronomic Enhancement and Risk Assessment -- 13.1 Introduction -- 13.2 Bioavailability of Trace Elements in Contaminated Soils -- 13.3 Case Study -- 13.3.1 Experimental Design -- 13.3.2 Target Hazard Quotient -- 13.4 Uptake of Trace Elements: Change in Bioavailability -- 13.5 Trace Element Accumulation in Vegetable/Fodder -- 13.6 Human Health Risk Assessment -- 13.7 Conclusion -- References -- Chapter 14 Geochemical Provenance of Metalloids and Their Release: Implications on Medical Geology -- 14.1 Medical Geology of Metalloids -- 14.2 Role of Natural Geologic Materials and Processes on Releasing of Metalloids to the Environment -- 14.2.1 Release to Hydrosphere -- 14.2.2 Release to Lithosphere -- 14.2.3 Release to Atmosphere -- 14.2.4 Mechanism of the Release of the Metalloids to the Environment -- 14.3 Bioavailability and Bioaccessibility of Metalloids -- 14.3.1 Soil -- 14.3.2 Aquatic Environment -- 14.3.3 Atmosphere -- 14.4 Human Exposure of Metalloids -- 14.5 Toxicity of Metalloids to Human and Prevention -- 14.6 The Risk Management Strategies to Reduce the Bioavailable of Metalloids in the Environment -- 14.6.1 Remediation of Metalloids from the Water Bodies -- 14.6.2 Remediation of Metalloids from the Soil Matrices -- 14.7 Summary and Future Development -- References -- Chapter 15 Cobalt and Copper Deficiency and Molybdenosis -- 15.1 Introduction -- 15.2 Role of Co, Cu, and Mo as Micronutrients -- 15.2.1 Role of Cu as a Micronutrient in Plants -- 15.2.2 Role of Cu as a Micronutrient in Animals -- 15.2.3 Role of Co as a Micronutrient in Plants -- 15.2.4 Role of Co as a Micronutrient in Animals. , 15.2.5 Co and Cu Micro-Deficiency.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Sustainable engineering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (525 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119678502
    DDC: 628
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Ecological Engineering and Ecosystem Services - Theory and Practice -- 1.1 Introduction -- 1.2 Ecological Engineering: History and Definition -- 1.3 Ecosystem Services: History, Concepts, and Dimensions -- 1.3.1 Sizing Ecosystem Services -- 1.3.2 Agriculture and Ecosystem Services -- 1.4 Final Considerations: Challenges for the Future -- Notes -- References -- Chapter 2 Ecological and Ecosystem Engineering for Economic-Environmental Revitalization -- 2.1 Introduction -- 2.2 Revitalization of Physical/Environmental Factors -- 2.2.1 Low Temperature -- 2.2.2 Limited Soil Drainage and Shallow Rooting Depth -- 2.2.3 Unfavorable Texture and Stoniness -- 2.2.4 Sloping Areas -- 2.2.5 Dryness -- 2.2.6 Waterlogging -- 2.3 Revitalization of Chemical Factors -- 2.3.1 Acidity -- 2.3.2 Heavy Metals and Organic Contaminants -- 2.3.3 Salinity and Sodicity -- 2.4 Economic Revitalization of Degraded Soil Ecosystems -- 2.5 Conclusions -- References -- Chapter 3 Environmental Issues and Priority Areas for Ecological Engineering Initiatives -- 3.1 Introduction -- 3.2 Basic Concepts of Ecological Engineering -- 3.3 Practice and Implication of Ecological Engineering -- 3.4 Priority Areas for Ecological Engineering -- 3.4.1 Coastal Ecosystem Restoration -- 3.4.2 Mangrove Restoration -- 3.4.3 River and Wetland Restoration -- 3.4.4 Ecological Engineering in Soil Restoration and Agriculture -- 3.5 Conclusion -- Notes -- References -- Chapter 4 Soil Meso- and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites -- 4.1 Introduction -- 4.2 Restoration to Combat Land Degradation -- 4.3 Mine Rehabilitation -- 4.3.1 Mine Tailings -- 4.3.2 Rehabilitation of Mine Tailings -- 4.3.3 The Challenge of Metal Mine Rehabilitation. , 4.4 Restoration Success Assessment: Monitoring Diversity, Vegetation, and Ecological Processes -- 4.4.1 Monitoring Diversity -- 4.4.2 Vegetation -- 4.4.3 Ecological Processes -- 4.5 Gaps in the Assessment of Restoration Success in Mine Sites -- 4.6 Increasing Restoration Success by Enhancing Soil Biodiversity and Soil Multifunctionality -- 4.7 Using Keystone Species and Ecosystem Engineers in Restoration -- 4.7.1 Earthworms -- 4.7.2 Ants -- 4.7.3 Termites -- 4.7.4 Collembola and Mites -- 4.8 Conclusions and Further Perspective for the Restoration of Metalliferous Tailings -- References -- Chapter 5 Ecological Engineering and Green Infrastructure in Mitigating Emerging Urban Environmental Threats -- 5.1 Dimensions of Ecological Engineering in the Frame of Ecosystem Service Provision -- 5.2 Landfill Afteruse Practices Based on Ecological Engineering and Green Infrastructure -- 5.2.1 Old Landfill Closure and Rehabilitation Procedures -- 5.2.2 Landfill Restoration Examples Around the World -- 5.2.2.1 Conventional Landfill Closure (Campulung, Romania) -- 5.2.2.2 Elbauenpark Including Am Cracauer Anger Landfill (Magdeburg, Germany) -- 5.2.2.3 World Cup Park (Nanjido Landfill, Seoul, South Korea) -- 5.2.2.4 Fudekeng Environmental Restoration Park (Taiwan) -- 5.2.2.5 Hong Kong -- 5.2.2.6 Hyria Landfill Site (Tel Aviv, Israel) -- 5.2.2.7 Valdemingomez Forest Park (Madrid, Spain) -- 5.2.2.8 Freshkills Park - A Mega Restoration Project in the US -- 5.3 Role of Ecological Engineering in Transforming Brownfields into Greenfields -- 5.3.1 UGI Options for Brownfield Recycling -- 5.3.2 Pilot Case: Restoration of a Brownfield to Provide ES - Albert Railway Station (Dresden, Germany) Transformation into the Weißeritz Greenbelt -- 5.4 Green Infrastructures for Mitigating Urban Transport-Induced Threats -- 5.4.1 Transportation Heritage from the Industrial Period. , 5.4.2 The Cases of the Rose Kennedy Greenway and Cheonggyecheon River Restoration -- 5.4.2.1 The Concept: Expressway-to-Greenway Conversion -- 5.4.2.2 Environmental Efficiency and Effectiveness -- 5.4.2.3 Social Impact -- 5.4.2.4 Economic Efficiency -- 5.5 Conclusions -- References -- Chapter 6 Urban Environmental Issues and Mitigation by Applying Ecological and Ecosystem Engineering -- 6.1 Urbanization -- 6.2 Global Trends of Urbanization and Its Consequences -- 6.3 Urban Environmental Issues -- 6.3.1 Physical Urban Environmental Issues -- 6.3.1.1 Urban Heat Islands -- 6.3.1.2 Urban Flooding -- 6.3.1.3 Urban Pollution (Air, Water, Noise) and Waste Management -- 6.3.2 Biological Urban Environmental Issues -- 6.3.2.1 Declining Urban Ecosystem Services Due to Loss of Biodiversity -- 6.3.2.2 Increasing Disease Epidemiology -- 6.4 Ecosystem Engineering -- 6.5 Approaches for Mitigation of Urban Environmental Issues -- 6.5.1 Nature-Based Solutions -- 6.5.1.1 Green Infrastructure (GI) -- 6.5.1.2 Urban Wetlands and Riparian Forests -- 6.5.1.3 Solar Energy -- 6.5.2 Artificial Engineering Approaches -- 6.5.3 Landfill Gas as an Alternative Source of Energy: Waste to Wealth -- 6.5.3.1 Wastewater/Sewage Treatment Plants as Sources of Energy -- 6.5.3.2 Rainwater Harvesting -- 6.5.3.3 Constructed Floating Islands for Water Treatment -- 6.5.3.4 Microgrids -- 6.6 Future Perspective -- Acknowledgments -- References -- Chapter 7 Soil Fertility Restoration, Theory and Practice -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.3 Results -- 7.4 Discussion and Conclusions -- Acknowledgment -- References -- Chapter 8 Extracellular Soil Enzymes Act as Moderators to Restore Carbon in Soil Habitats -- 8.1 Introduction -- 8.2 Soil Organic Matter (SOM) -- 8.3 Soil Organic Carbon (SOC) -- 8.4 Soil Carbon Sequestration -- 8.5 Extracellular Soil Enzymes. , 8.6 Interactive Role of Extracellular Soil Enzymes in Soil Carbon Transformation -- 8.6.1 Cellulase -- 8.6.2 -Glucosidase -- 8.6.3 Invertase -- 8.6.4 Amylase -- 8.6.5 Xylanase -- 8.7 Conclusion -- References -- Chapter 9 Ecological Engineering for Solid Waste Segregation, Reduction, and Resource Recovery - A Contextual Analysis in Brazil -- 9.1 Introduction -- 9.2 Municipal Solid Waste in Brazil -- 9.3 Compostable Waste -- 9.4 Anaerobic Digestion -- 9.5 Recycling -- 9.6 Burning Waste Tires -- 9.7 Energy Recovery -- 9.8 Coprocessing Industrial Waste in Cement Kilns -- References -- Chapter 10 Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering -- 10.1 Sustainable Ecosystems through Engineering Approaches -- 10.2 Flooding and, Specifically, Urban Flooding as a Problem of Interest -- 10.3 Causes and Impacts of Urban Flooding -- 10.4 Protection Against and Mitigation of Urban Flooding in the Context of Sustainability -- 10.4.1 Living with Floods as a Sustainable Approach -- 10.4.2 Urban Flood Risk Management -- 10.4.3 Integrated and Interactive Flood Management -- 10.4.4 Structural and Nonstructural Measures for Flood Control -- 10.4.5 River and Wetland Restoration -- 10.4.6 Low Impact Development (LID) and Best Management Practices (BMPs) -- 10.5 Conclusions and Future Scope -- References -- Chapter 11 Ecological Engineering and Restoration of Mine Ecosystems -- 11.1 Background and Definitions -- 11.2 Ecological Criteria for Successful Mine Site Restoration -- 11.3 Examples of Reclamation Technology and Afforestation in Mining Areas -- 11.4 Selected Reclamation Practices Versus Mining Extraction and Environmental Conditions -- 11.5 Final Comments and Remarks -- References -- Chapter 12 Ecological Restoration of Abandoned Mine Land: Theory to Practice -- 12.1 Introduction. , 12.2 Integration of Ecology Theory, Restoration Ecology, and Ecological Restoration -- 12.2.1 Disturbance -- 12.2.2 Succession -- 12.2.3 Fragmentation -- 12.2.4 Ecosystem Functions -- 12.2.5 Restoration -- 12.2.6 Reclamation -- 12.2.7 Rehabilitation -- 12.2.8 Regeneration -- 12.2.9 Recovery -- 12.3 Restoration Planning -- 12.4 Components of Restoration -- 12.4.1 Natural Processes -- 12.4.2 Physical and Nutritional Constraints -- 12.4.3 Species Diversity -- 12.5 Afforestation of Mine-Degraded Land -- 12.5.1 Miyawaki Planting Methods -- 12.6 Methods of Evaluating Ecological Restoration Success -- 12.6.1 Criteria for Restoration Success -- 12.6.2 Indicator Parameters of a Restored Ecosystem -- 12.6.3 Soil Quality Index -- 12.7 Development of a Post-Mining Ecosystem: A Case Study in India -- 12.8 Conclusions and Future Research -- References -- Chapter 13 Wetland, Watershed, and Lake Restoration -- 13.1 Introduction -- 13.2 Renovation of Wastewater -- 13.2.1 Physical Methods -- 13.2.2 Chemical Methods -- 13.2.3 Biological Methods -- 13.2.4 Other Methods -- 13.3 Restoration of Bodies of Water -- 13.3.1 Watersheds -- 13.3.2 Wetlands -- 13.3.2.1 Methods of Restoring Wetlands -- 13.3.3 Rivers -- 13.3.4 Lakes -- 13.3.5 Streams -- 13.3.6 Case Studies -- 13.4 Problems Encountered in Restoration Projects -- 13.5 Conclusion -- References -- Chapter 14 Restoration of Riverine Health: An Ecohydrological Approach -Flow Regimes and Aquatic Biodiversity -- 14.1 Introduction -- 14.2 Habitat Ecology -- 14.2.1 Riverine Habitats -- 14.2.2 Linked Ecosystems -- 14.3 Riverine Issues -- 14.3.1 Bank Erosion, Siltation, and Aggradations of Rivers -- 14.3.2 Deforestation in Catchment Areas -- 14.3.3 River Pollution and Invasive Species -- 14.3.4 Fishing Pressure -- 14.3.5 Status of Wetlands (FPLs) -- 14.3.6 Regulated Rivers and Their Impacts. , 14.4 Ecorestoration of River Basins.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Cadmium-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (632 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128163719
    DDC: 571.954662
    Sprache: Englisch
    Anmerkung: Front Cover -- Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches -- Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches -- Copyright -- CONTENTS -- LIST OF CONTRIBUTORS -- ABOUT THE EDITORS -- PREFACE -- CHAPTER 1. CROP YIELD AND QUALITY UNDER CADMIUM STRESS -- CHAPTER 2. ORGANIC MANURES FOR CADMIUM TOLERANCE AND REMEDIATION -- CHAPTER 3. AGRONOMIC MANAGEMENT FOR CADMIUM STRESS MITIGATION -- CHAPTER 4. INORGANIC AMENDMENTS FOR THE REMEDIATION OF CADMIUM-CONTAMINATED SOILS -- CHAPTER 5. PROTEOMICS OF CADMIUM TOLERANCE IN PLANTS -- CHAPTER 6. CADMIUM PHYTOTOXICITY-BIOMARKERS -- CHAPTER 7. CADMIUM-INDUCED TOXICITY IN SORGHUM BICOLOR-ALLEVIATION -- CHAPTER 8. CADMIUM TOXICITY IN PLANTS: UNVEILING THE PHYSICOCHEMICAL AND MOLECULAR ASPECTS -- CHAPTER 9. CADMIUM ACCUMULATION IN CROPS AND THE INCREASING RISK OF DIETARY CADMIUM EXPOSURE: AN OVERVIEW -- CHAPTER 10. ROLE OF ORGANIC ACIDS IN MITIGATING CADMIUM TOXICITY IN PLANTS -- CHAPTER 11. ROLE OF LOW-MOLECULAR-WEIGHT COMPOUNDS IN CADMIUM STRESS TOLERANCE -- CHAPTER 12. PLANT NUTRIENTS AND CADMIUM STRESS TOLERANCE -- CHAPTER 13. ROLE OF SULFUR METABOLISM IN CADMIUM TOLERANCE -- CHAPTER 14. PLANT SIGNALING MOLECULES AND CADMIUM STRESS TOLERANCE -- CHAPTER 15. MITIGATION OF CADMIUM STRESS IN CEREALS: MOLECULAR SIGNALING AND AGRONOMIC ASPECTS -- CHAPTER 16. ANTIOXIDANT DEFENSE RESPONSE IN PLANTS TO CADMIUM STRESS -- CHAPTER 17. ALLEVIATION OF CADMIUM STRESS IN WHEAT BY POLYAMINES -- CHAPTER 18. BIOTECHNOLOGICAL TOOLS IN THE REMEDIATION OF CADMIUM TOXICITY -- CHAPTER 19. NOVEL TECHNOLOGIES FOR DEVELOPING CADMIUM TOLERANCE -- CHAPTER 20. ACHIEVEMENTS AND OPPORTUNITIES FOR IMPROVING CADMIUM STRESS TOLERANCE IN CROP PLANTS -- CHAPTER 21. CONTRIBUTION OF ARBUSCULAR MYCORRHIZAL FUNGI IN PROMOTING CADMIUM TOLERANCE IN PLANTS. , 1 - Crop Yield and Quality Under Cadmium Stress -- 1. EFFECT OF CADMIUM STRESS ON CROP YIELD -- 1.1 Effect of Cd Stress on Rice Yield -- 1.2 Effect of Cd Stress on Peanut Yield -- 1.3 Effect of Cd Stress on Upland Cotton Yield -- 1.4 Effect of Cd Stress on Wheat Yield -- 1.5 Summary -- 2. EFFECT OF CD STRESS ON CROP QUALITY -- 2.1 Effect of Cd Stress on Rice Grain Quality -- 2.2 Effect of Cd Stress on Wheat Grain Quality -- 2.3 Effect of Cd Stress on Quality of Soybean Grain -- 2.4 Effect of Cd Stress on Peanut Quality -- 2.5 Effect of Cd Stress on Maize Kernel Quality -- 2.6 Summary -- 3. PERSPECTIVE -- ACKNOWLEDGMENTS -- REFERENCES -- FURTHER READING -- 2 - Organic Manures for Cadmium Tolerance and Remediation -- 1. INTRODUCTION -- 2. SOURCES OF CD CONTAMINATION IN AGRICULTURAL SOIL -- 3. CD DYNAMICS IN SOIL AND ITS PLANT AVAILABILITY -- 4. CD TOXICITY TO PLANTS AND HUMANS -- 5. WHY MANURES ARE PREFERRED AS BEST REMEDIATING AGENTS -- 6. BIOCHEMISTRY OF ORGANIC MANURES AND THEIR DYNAMICS IN SOIL -- 7. MANURES -- THEIR TYPES AND EFFECT ON CD MOBILITY IN SOIL -- 7.1 Animal-Based Manures -- 7.1.1 Farm Yard Manures and Their Effect on Cd Mobility -- 7.1.2 Liquid Manures (Urines/Slurries/Dungs) and Their Effect on Cd Mobility -- 7.1.3 Swine, Small Ruminant, and Equine Manures and Their Effect on Cd Mobility -- 7.1.4 Meal Manures (Bone/Fish/Blood, Etc.) and Their Effect on Cd Mobility -- 7.1.5 Poultry Bird Manure -- 7.2 Green Manures and Their Effects on Cd Bioavailability -- 7.3 Agricultural Residues, Food, and Domestic Wastes -- 7.4 Industry-Based Manures -- 7.4.1 Biogas Slurry -- 7.4.2 Sugarcane and Paper Industry Waste -- 7.4.3 Sewage Sludge -- 7.5 Modified Manures -- 7.5.1 Composts -- 7.5.1.1 Vermicompost -- 7.5.2 Biochars -- 8. EFFECT OF OM ON UPTAKE, TRANSLOCATION AND ACCUMULATION OF CD IN PLANTS -- 8.1 DOM Can Mobilize Cd for Phytoextraction. , 9. THE POSSIBLE RISK ASSOCIATED WITH SOIL APPLICATION OF RAW OM -- 9.1 OMs Could be the Potential Source of Heavy Metals in Agricultural Soils -- 9.2 Other Risks Associated With Manure Application -- 9.2.1 Water Pollution -- 9.3 Greenhouse Gases Emission and Atmospheric Pollution -- 9.3.1 Secondary Salinization -- 10. SUMMARY -- 11. FUTURE STRATEGIES -- REFERENCES -- FURTHER READING -- 3 - Agronomic Management for Cadmium Stress Mitigation -- 1. SOIL AMENDMENTS APPLICATION -- 1.1 Inorganic Amendments -- 1.1.1 Phosphate Compounds -- 1.1.2 Lime Treatment -- 1.1.3 Metal Oxides -- 1.1.4 Clay Minerals -- 1.2 Organic Amendments -- 1.3 Exogenous Application of Soil Organisms -- 2. FERTILIZERS AND MANURE MANAGEMENT -- 2.1 Nitrogen Level -- 2.2 Phosphatic Fertilizers -- 2.3 Zinc Fertilization -- 2.4 Sulfur Fertilization -- 2.5 Silicon Fertilization -- 2.6 Iron Fertilization -- 2.7 Organic Fertilizer (Composts and Manures) -- 3. IRRIGATION MANAGEMENT -- 4. TILLAGE MANAGEMENT -- 4.1 Crop Rotation -- 4.2 Intercropping -- 4.3 Other Tillage Practices -- 5. PLANT BREEDING AND PLANT SPECIES SELECTION -- 5.1 Differences Among Species -- 5.2 Differences Among Cultivars -- 6. CONCLUSIONS -- REFERENCES -- FURTHER READING -- 4 - Inorganic Amendments for the Remediation of Cadmium-Contaminated Soils -- 1. INTRODUCTION -- 2. CADMIUM ACCUMULATION AND TOXICITY IN THE ENVIRONMENT -- 3. REMEDIATION OF CD-CONTAMINATED SOIL USING INORGANIC AMENDMENTS -- 4. INORGANIC AMENDMENTS AND REMEDIATION OF CD-CONTAMINATED SOILS -- 4.1 Coal Ash -- 4.2 Zeolites -- 4.3 Liming Materials -- 4.4 Red Mud -- 4.5 Iron and Al Oxides -- 4.6 Phosphate Fertilizers -- 4.7 Silicon-Containing Material -- 4.8 Nitrogenous Amendments -- 5. PHYTOREMEDIATION USING IOA'S -- 5.1 Sulfur -- 5.2 EDTA and Other Chelating Agents -- 6. CONTROVERSIES ABOUT USING IOAS FOR REMEDIATION OF CD-CONTAMINATED SOILS. , 7. FUTURE PERSPECTIVES -- 8. SUMMARY -- REFERENCES -- FURTHER READING -- 5 - Proteomics of Cadmium Tolerance in Plants -- 1. INTRODUCTION -- 2. OMICS AND PROTEOMICS -- 3. PROTEINS RELATED TO PHOTOSYNTHESIS -- 4. ENERGY AND METABOLISM -- 5. DEFENSE PROTEOME -- 5.1 Antioxidant Defense -- 5.2 Chaperones -- 5.3 14-3-3 Proteins -- 5.4 Pathogenesis-Related Proteins -- 5.5 Miscellaneous Group of Proteins Involved in Defense -- 6. PROTEINS ASSOCIATED WITH TRANSCRIPTION AND TRANSLATION -- 7. PROTEIN RELATED TO TRANSPORT AND DEGRADATION -- 8. PROTEINS RELATED TO OXIDOREDUCTASE GROUP -- 9. PROTEINS RELATED TO GROWTH AND DEVELOPMENT -- 10. CONCLUDING REMARK -- REFERENCES -- FURTHER READING -- 6 - Cadmium Phytotoxicity-Biomarkers -- 1. PHYTOTOXICITY OF CADMIUM -- 2. PLANT RESPONSE TO CADMIUM EXPOSURE -- 2.1 Immobilization and Exclusion -- 2.2 Compartmentalization -- 2.3 Ethylene Stress -- 3. TOXICITY BIOMARKERS -- 4. BIOMARKERS SPECIFIC FOR METAL STRESS -- 4.1 Phytochelatins -- 4.2 Metallothioneins -- 5. METAL STRESS-NONSPECIFIC BIOMARKERS -- 5.1 Enzymatic Response -- 5.2 Metabolites -- 5.3 Membrane Parameters -- 5.4 Fluorescence -- 6. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 7 - Cadmium-Induced Toxicity in Sorghum bicolor-Alleviation by Zinc and Aggravation by Phosphate -- 1. INTRODUCTION -- 1.1 Cadmium -- 1.1.1 Cadmium in Plants -- 1.2 Zinc -- 1.2.1 Zinc in Plants -- 1.3 Phosphorus -- 1.3.1 Phosphorus in Plants -- 1.4 Sorghum -- 2. INTERACTION EFFECTS AMONG CD, ZN, AND P ON SORGHUM GROWTH -- 2.1 Uptake and Transport -- 2.2 Oxidative Stress -- 2.3 Damage Caused by Oxidative Stress -- 3. OUTLOOK -- REFERENCES -- 8 - Cadmium Toxicity in Plants: Unveiling the Physicochemical and Molecular Aspects -- 1. INTRODUCTION -- 2. SOURCES OF HEAVY METALS AND ENVIRONMENTAL CHEMICAL TOXICITY -- 3. CADMIUM: HISTORICAL PERSPECTIVES AND CHEMICAL PROPERTIES. , 4. UPTAKE, TRANSPORT, TRANSLOCATION, AND SEQUESTRATION OF CADMIUM IN PLANTS -- 5. PLANT RESPONSES TO CADMIUM STRESS -- 6. PLANT HEALTH UNDER CADMIUM STRESS -- 7. CADMIUM STRESS STIMULATES AND INTEGRATES VARIOUS SIGNALING PATHWAYS IN PLANTS -- 8. PROTECTION AGAINST CADMIUM STRESS-THE CHELATION MECHANISM -- 9. MOLECULAR ASPECTS OF CADMIUM-MEDIATED TOXICITY-ACTIVATION OF OXIDATIVE AND GENOTOXIC STRESS RESPONSE IN THE PLANT GENOME -- 10. STRESS ADAPTATION STRATEGY-TRANSCRIPTIONAL AND EPIGENETIC REGULATION IN PLANTS UNDER CADMIUM STRESS -- 11. PERSPECTIVE AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- FURTHER READING -- 9 - Cadmium Accumulation in Crops and the Increasing Risk of Dietary Cadmium Exposure: An Overview -- 1. INTRODUCTION -- 2. CADMIUM STRESS AND CYTOTOXICITY -- 3. CADMIUM-MEDIATED GENOTOXICITY IN PLANTS -- 4. DEVELOPMENT OF HEAVY-METAL STRESS TOLERANCE IN CROP PLANTS -- 5. PERSPECTIVE -- ACKNOWLEDGEMENT -- REFERENCES -- FURTHER READING -- 10 - Role of Organic Acids in Mitigating Cadmium Toxicity in Plants -- 1. INTRODUCTION -- 2. EFFECTS OF ORGANIC ACIDS ON CD SOLUBILISATION AND MOBILISATION -- 3. ORGANIC ACIDS REGULATE CD UPTAKE BY PLANTS -- 3.1 Mechanism of Cd Uptake Mediated by Organic Acids in Plants -- 4. ORGANIC ACIDS REGULATE CD TRANSLOCATION TO AERIAL PLANT TISSUE -- 4.1 Mechanism of Cd Translocation Mediated by Organic Acids in Plants -- 5. ORGANIC ACIDS ALLEVIATE CD STRESS AND INDUCE TOLERANCE IN PLANTS -- 5.1 Organic Acids Regulate Soil pH -- 5.2 Organic Acids Mediate Cd Chelation -- 5.3 Organic Acids Regulate Growth and Biomass of Plants Exposed to Cd Stress -- 5.4 Organic Acids Regulate Physiological and Biochemical Attributes of Cd-Stressed Plants -- 6. ENVIRONMENTAL IMPLICATIONS OF ORGANIC ACID-ENHANCED CD PHYTOREMEDIATION -- 7. CONCLUSIONS AND FUTURE PERSPECTIVES OF ORGANIC ACID-COUPLED CD PHYTOREMEDIATION -- REFERENCES. , 11 - Role of Low Molecular Weight Compounds in Cadmium Stress Tolerance.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Water. ; Hydrology. ; Energy policy. ; Energy and state. ; Environmental management. ; Sustainability. ; Refuse and refuse disposal. ; Kreislaufwirtschaft ; Wasserwirtschaft ; Wasserreserve ; Abwasser
    Beschreibung / Inhaltsverzeichnis: Water as key resource in Circular Economy -- Impact Of Climate Change on Water Status: Challenges and Emerging Solutions -- Integrated Water Management - Directions of Activities and Policies -- Circular Water Management in Smart Cities -- The Influence of Mineral Parameters on the Geochemistry of Heavy Metals in Bottom Sediments -- Sustainable Water Use in Agriculture - Circular Economy Approach -- Innovative Solutions in the Transition to Circular Economy in Water Sector -- Advanced Treatment Technologies in Removal of Pollutants from Water and Wastewater -- The Role of Water Recycling in Building a Circular Economy in the Textile Industry -- The Role of Water Recycling in Building a Circular Economy in the Textile Industry -- Preliminary Microbiological Risk Assessment for Local Water Reuse in a Small MBR Waste Water Treatment Plant -- Can Remote Sensing be a Useful Tool to Increase Water Reuse in Agriculture? -- Nutrients Recovery in Water and Wastewater Sector -- Technologies for Nutrient Recovery From Municipal Wastewater -- Circular Economy in Domestic and Industrial Waste Waters: Challenges and Opportunities -- Monitoring of Circular Economy Implementation in Water Sector -- Water Footprint of Business and Circular Economy -- Economic, Social and Environmental Dimensions in the Circular Economy (CE) Monitoring Framework in Water and Wastewater Sector -- Circular Economy Indicators and Measures in Water and Wastewater Sector – Case Study -- Business Opportunities in Water and Wastewater Sector as a Part of the Resolve Framework -- Circular Economy Implementation in the Water Sector: Wastewater Treatment Plant Tychy-Urbanowice Case Study -- Wastewater-Based Circular Economy Operations in East Kolkata Wetlands (The Largest Ramasar Site in South Asia), India.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(IX, 254 p. 106 illus., 81 illus. in color.)
    Ausgabe: 1st ed. 2023.
    ISBN: 9783031181658
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...