GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 450 (2007), S. 874-878 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Mud volcanoes, mudpots and fumaroles are remarkable geological features characterized by the emission of gas, water and/or semi-liquid mud matrices with significant methane fluxes to the atmosphere (10-1 to 103 t y-1). Environmental ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Antonie van Leeuwenhoek 50 (1984), S. 100-100 
    ISSN: 1572-9699
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1572-9729
    Schlagwort(e): biofilter ; dimethylsulfide ; Hyphomicrobium ; odor ; trickling filter ; volatile sulfur compounds
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Energietechnik , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract The methylotrophic bacteriumHyphomicrobium VS was enriched and isolated, using activated sewage sludge as inoculum in mineral medium containing dimethylsulfide (DMS) at a low concentration to prevent toxicity. DMS concentrations above 1 mM proved to be growth inhibiting.Hyphomicrobium VS could use DMS, dimethylsulfoxide (DMSO), methanol, formaldehyde, formate, and methylated amines as carbon and energy source. Carbon was assimilated via the serine pathway. DMS-grown cells respired sulfide, thiosulfate, methanethiol, dimethyldisulfide and dimethyltrisulfide. To testHyphomicrobium VS for application in biofiltration of air polluted with volatile sulfur compounds two laboratory scale trickling biofilters with polyurethane and lava stone as carrier material were started up by inoculation with this bacterium. Both methanol- and DMS-grown cells could be used. Only a short adaptation period was needed. Short term experiments showed that high concentrations of DMS (1–2 µmol 1−1) were removed very efficiently by the biofilters at space velocities up to 100 h−1.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 129 (1981), S. 23-28 
    ISSN: 1432-072X
    Schlagwort(e): Thiobacillus A 2 ; Mixotrophy ; Enzyme-induction ; Enzyme-inactivation ; Metabolic flexibility
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract During autotrophic growth, cells of Thiobacillus A 2 retained a considerable capacity to oxidize various organic energy sources. Heterotrophically grown cultures, on the other hand, were completely devoid of the capacity to fix CO2 via the Calvin cycle and to generate energy from thiosulfate. During transitions from organic media to inorganic thiosulfate-containing media in the chemostat, a long lag-phase was observed before energy generation, CO2 fixation and, consequenctly, measurable growth occurred. This lag-phase was practically abolished if substrates were presentm at very low concentrations in the thiosulfate mineral medium which could be used as an energy source. The same result was obtained when the cells contained reserve material at the moment of the transition. During transitions from thiosulfate-limited growth to starvation, the $${\text{Q}}_{{\text{O}}_{\text{2}} }^{{\text{max}}} $$ -thiosulfate and the capacity to fix CO2 decreased very slowly, after an initial short (± 4 h) increase of both enzyme systems. In contrast, these two metabolic functions were inactivated relatively rapidly in the presence of an oxidizable organic carbon and energy source. This process of inactivation was instantaneously stopped and reversed into rapid enzyme synthesis upon replacement of the organic substrate by thiosulfate.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-02-15
    Beschreibung: The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3–5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at μmax (0.051 ± 0.001 h−1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3–5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 μM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.
    Beschreibung: Published
    Beschreibung: 637762
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): Verrucomicrobia ; acidophilic ; methanotroph ; hydrogenase ; Methylacidimicrobium thermophilum AP8 ; 05. General
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-11-09
    Beschreibung: Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
    Beschreibung: Published
    Beschreibung: e00517-20
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): geothermal ; hydrogen ; metagenomics ; methane ; methanogenesis ; methanotroph ; 05.09. Miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-06-14
    Beschreibung: Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs). One of these MAGs did not phylogenetically classify within any existing genus. After extensive analysis of the MAG, we propose the name of "Candidatus Methylacidithermus pantelleriae" PQ17 gen. nov. sp. nov. The MAG consisted of 2,466,655 bp, 71 contigs and 3,127 predicted coding sequences. Completeness was found at 98.6% and contamination at 1.3%. Genes encoding the pMMO and XoxF-MDH were identified. Inorganic carbon fixation might use the Calvin-Benson-Bassham cycle since all genes were identified. The serine and ribulose monophosphate pathways were incomplete. The detoxification of formaldehyde could follow the tetrahydrofolate pathway. Furthermore, "Ca. Methylacidithermus pantelleriae" might be capable of nitric oxide reduction but genes for dissimilatory nitrate reduction and nitrogen fixation were not identified. Unlike other verrucomicrobial methanotrophs, genes encoding for enzymes involved in hydrogen oxidation could not be found. In conclusion, the discovery of this new MAG expands the diversity and metabolism of verrucomicrobial methanotrophs.
    Beschreibung: Published
    Beschreibung: 666929
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): Verrucomicrobia ; acidophilic ; methanotroph ; Ca. Methylacidithermus pantelleriae ; volcanic soil ; 05.09. Miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-06-14
    Beschreibung: The genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists of 134 contigs and 3955 genes were found, of which 3902 were protein coding genes. All genes for CH4 oxidation to CO2 were detected, including pmoCAB encoding particulate methane monooxygenase (pMMO) and xoxF encoding a methanol dehydrogenase. No gene encoding a formaldehyde dehydrogenase was present and the formaldehyde to formate conversion follows the tetrahydromethanopterin (H4MPT) pathway. "Ca. Methylobacter favarea" B2 uses the Ribulose-Mono-Phosphate (RuMP) pathway for carbon fixation. Analysis of the MAG indicates that Na+/H+ antiporters and the urease system might be important in the maintenance of pH homeostasis of this strain to cope with acidic conditions. So far, thermoacidophilic Methylobacter species have not been isolated, however this study indicates that members of the genus Methylobacter can be found in distinct ecosystems and their presence is not restricted to freshwater or marine sediments.
    Beschreibung: Published
    Beschreibung: 313-324
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): Methane ; Methanotroph ; Volcanic soil ; Metabolic potential ; 05.09. Miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2020-06-30
    Beschreibung: Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (μmax 0.19 ± 0.02 h-1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.
    Beschreibung: Published
    Beschreibung: Article 951
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): CO ; H2 ; Kyrpidia spormannii ; [NiFe]-hydrogenases ; phylogeny ; thermoacidophilic ; 05.09. Miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...