GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-02-07
    Beschreibung: Eastern boundary upwelling systems (EBUS) contribute a disproportionate fraction of the global fish catch relative to their size and are especially susceptible to global environmental change. Here we present the evolution of communities over 50 days in an in situ mesocosm 6 km offshore of Callao, Peru and in the nearby unenclosed coastal Pacific Ocean. The communities were monitored using multi-marker environmental DNA (eDNA) metabarcoding and flow cytometry. DNA extracted from weekly water samples were subjected to amplicon sequencing for four genetic loci: 1) the V1-V2 region of the 16S rRNA gene, for photosynthetic eukaryotes (via their chloroplasts) and bacteria; 2) the V9 region of the 18S rRNA gene for exploration of eukaryotes but targeting phytoplankton; 3) cytochrome oxidase I (COI), for exploration of eukaryotic taxa but targeting invertebrates, and 4) the 12S rRNA gene, targeting vertebrates. The multi-marker approach showed a divergence of communities (from microbes to fish) between the mesocosm and the unenclosed ocean. Together with the environmental information, the genetic data furthered our mechanistic understanding of the processes that are shaping EBUS communities in a changing ocean. The unenclosed ocean experienced significant variability over the course of the 50-day experiment with temporal shifts in community composition but remained dominated by organisms that are characteristic of high nutrient, upwelling conditions (e.g. diatoms, copepods, anchovies). A large directional change was found in the mesocosm community. The mesocosm community that developed was characteristic of upwelling regions when upwelling relaxes and waters stratify (e.g. dinoflagellates, nanoflagellates). The selection of dinoflagellates under the warm (coastal El Niño) and stratified conditions in the mesocosm may be an indication of how EBUS will respond under the global environmental changes (i.e. continued global warming) forecast by the IPCC.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-07
    Beschreibung: Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-12-13
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 1 (2014): 222–235, doi:10.5670/oceanog.2014.26.
    Beschreibung: One of the most dramatic large-scale features in the ocean is the seasonal greening of the North Atlantic in spring and summer due to the accumulation of phytoplankton biomass in the surface layer. In 1953, Harald Ulrik Sverdrup hypothesized a now canonical mechanism for the development and timing of phytoplankton blooms in the North Atlantic. Over the next 60 years, Sverdrup's Critical Depth Hypothesis spurred progress in understanding of bloom dynamics and offered a valuable theoretical framework on which to build. In reviewing 60 years of literature, the authors trace the development of modern bloom initiation hypotheses, highlighting three case studies that illuminate the complexity, including both catalysts and impediments, of scientific progress in the wake of Sverdrup's hypothesis. Most notably, these cases demonstrate that the evolution of our understanding of phytoplankton blooms was paced by access not only to technology but also to concurrent insights from several disciplines. This exploration of the trajectories and successes in bloom studies highlights the need for expanding interdisciplinary collaborations to address the complexity of phytoplankton bloom dynamics.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, W. M., Alexander, H., Bier, R. L., Miller, D. R., Muscarella, M. E., Pitz, K. J., & Smith, H. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiology Ecology, (2020): fiaa115, doi: 10.1093/femsec/fiaa115.
    Beschreibung: Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
    Beschreibung: This work was supported by the National Science Foundation [OCE-1356192].
    Schlagwort(e): Auxotrophy ; Microbial community stability ; Microbial interactions ; Aquatic
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...