GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lopes, A F; Morais, P; Pimentel, Marta; Rosa, Rui; Munday, Philip L; Gonçalves, Emanuel J; Faria, Ana M (2016): Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Marine Biology, 163(12), https://doi.org/10.1007/s00227-016-3026-4
    Publication Date: 2024-03-15
    Description: Recent studies have shown that the behaviour and development of coral reef fish larvae is hampered by projected future CO2 levels. However, it is uncertain to what extent this effect also occurs in temperate species. The effects that elevated pCO2 (2000 µatm) levels, which are expected to occur in coastal upwelling regions in the future, have on shoaling behaviour and lateralization (turning preference) of fish, were tested in temperate sand smelt Atherina presbyter larvae. The hypothesis that behavioural changes are caused by interference of high CO2 with GABA-A receptor function was tested by treating larvae with a receptor antagonist (gabazine). Routine swimming speed did not differ between control and high pCO2, but exposure to high pCO2 for 7 days affected group cohesion, which presented a more random distribution when compared to control fish. However, this random distribution was reversed after 21 days of exposure to high CO2 conditions. Lateralization at the individual level decreased in fish exposed to high pCO2 for 7 and 21 days, but gabazine reversed this decline. This adds to the growing body of evidence that the effects of a more acidified environment on fish larvae behaviour are likely due to altered function of GABA-A receptors. Overall, our results suggest that future pCO2 levels likely to occur in temperate coastal ecosystems could have an adverse effect on temperate larval fish behaviour.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arrabida_OA; Atherina presbyter; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Index; Laboratory experiment; Lateralization; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Speed, swimming; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 14814 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Ocean acidification is a consequence of chemical changes driven mainly by a continuous uptake of carbon dioxide, resulting in pH decrease. This phenomenon represents an additional threat to marine life, with expected effects ranging from changes in behavioral responses and calcification rates to the potential promotion of oxidative stress. To unravel the impacts of ocean acidification on the antioxidant system of sharks, we performed a long-term exposure (9 months, since early embryogenesis) to high CO2 conditions (pCO2 900 μatm) on a temperate shark (Scyliorhinus canicula). The following biomarkers were measured: enzymatic antioxidant defense (superoxide dismutase, catalase and glutathione peroxidase), protein repair and removal (heat shock proteins and ubiquitin), and oxidative damage on lipids (malondialdehyde) and DNA (8-hydroxy-2′-deoxyguanosine). Changes in the antioxidant enzyme defense were restricted to an increase in catalase activity in the muscle, an enzyme that plays a major role in oxidative stress mitigation. On the other hand, no evidence of oxidative damage was found, indicating that the observed increase in catalase activity may be enough to neutralize the effects of potentially higher reactive oxygen species. These results further indicate that these sharks' antioxidant system can successfully cope with the levels of carbon dioxide projected for the end of the century. Nonetheless, the interaction between ocean acidification and the rise in temperature expected to occur in a near future may disturb their antioxidant capacity, requiring further investigation.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Catalase activity, per protein mass; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); DNA damage, per protein; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heat shock protein, per protein mass; Identification; Laboratory experiment; Lipid peroxidation, per wet mass; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Organ; Other metabolic rates; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Replicate; Salinity; Salinity, standard deviation; Scyliorhinus canicula; Single species; Species; Superoxide dismutase activity, inhibition, per protein mass; Temperate; Temperature, water; Temperature, water, standard deviation; Total glutathione peroxidases activity, per protein mass; Treatment; Type; Ubiquitin; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 29525 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pimentel, Marta; Pegado, Maria; Repolho, Tiago; Rosa, Rui (2014): Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Marine Biology, 161(3), 725-729, https://doi.org/10.1007/s00227-013-2365-7
    Publication Date: 2024-03-15
    Description: Since the industrial revolution, [CO2]atm has increased from 280 µatm to levels now exceeding 380 µatm and is expected to rise to 730-1,020 µatm by the end of this century. The consequent changes in the ocean's chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (delta pH 0.5; 0.16 % CO2, ~1,600 µatm) significantly (p 〈 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coryphaena hippurus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Larvae; Larvae, standard deviation; Nekton; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Orientation frequency; Orientation frequency, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Reproduction; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; Salinity, standard deviation; Single species; Species; Spectrophotometric; Swimming duration; Swimming duration, standard deviation; Temperature, water; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sampaio, Eduardo; Lopes, Ana R; Francisco, Sofia; Paula, José Ricardo; Pimentel, Marta; Maulvault, Ana L; Repolho, Tiago; Grilo, Tiago F; Pousão-Ferreira, Pedro; Marques, António; Rosa, Rui (2018): Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish ( Argyrosomus regius ). Science of the Total Environment, 618, 388-398, https://doi.org/10.1016/j.scitotenv.2017.11.059
    Publication Date: 2024-03-15
    Description: Increases in carbon dioxide (CO2) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (delta T = 4 °C) and acidification (ΔpCO2 = 1100 μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30 days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO2-promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic).
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Argyrosomus regius; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Catalase activity, per protein mass; Chordata; Containers and aquaria (20-1000 L or 〈 1 m**2); Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fulton's condition factor; Glutathione S-transferase, activity per protein mass; Heat shock protein, per protein mass; Identification; Inorganic toxins; Laboratory experiment; Laboratory strains; Malondialdehyde, per protein mass; Mercury; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Superoxide dismutase activity, per protein mass; Temperature; Temperature, water; Temperature, water, standard deviation; Tissues; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 10916 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-25
    Description: Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-25
    Description: Early life stages of many marine organisms are being challenged by climate change, but little is known about their capacity to tolerate future ocean conditions. Here we investigated a comprehensive set of biological responses of larvae of two commercially important teleost fishes, Sparus aurata (gilthead seabream) and Argyrosomus regius (meagre), after exposure to future predictions of ocean warming (+4 °C) and acidification (ΔpH = 0.5). The combined effect of warming and hypercapnia elicited a decrease in the hatching success (by 26.4 and 14.3 % for S. aurata and A. regius, respectively) and larval survival (by half) in both species. The length for newly-hatched larvae was not significantly affected, but a significant effect of hypercapnia was found on larval growth. However, while S. aurata growth was reduced (24.8–36.4 % lower), A. regius growth slightly increased (3.2–12.9 % higher) under such condition. Under acidification, larvae of both species spent less time swimming, and displayed reduced attack and capture rates of prey. The impact of warming on these behavioural traits was opposite but less evident. While not studied in A. regius, the incidence of body malformations in S. aurata larvae increased significantly (more than tripled) under warmer and hypercapnic conditions. These morphological impairments and behavioural changes are expected to affect larval performance and recruitment success, and further influence the abundance of fish stocks and the population structure of these commercially important fish species. However, given the pace of ocean climate change, it is important not to forget that species may have the opportunity to acclimate and adapt.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-16
    Description: Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13–17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P〈0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P〈0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P〈0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P〈0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P〈0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P〈0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchling's energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO2). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO2 in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-30
    Description: The impact of a realistic warming scenario on the metabolic physiology of early cephalopod (squid Loligo vulgaris and cuttlefish Sepia officinalis) life stages was investigated. During exposure to the warming conditions (19 °C for the western coast of Portugal in 2100), the increase in oxygen consumption rates throughout embryogenesis was much steeper in squid (28-fold increase) than in cuttlefish (11-fold increase). The elevated catabolic activity–accelerated oxygen depletion within egg capsules, which exacerbated metabolic suppression toward the end of embryogenesis. Squid late-stage embryos appear to be more impacted by warming via metabolic suppression than cuttlefish embryos. At all temperature scenarios, the transition from encapsulated embryos to planktonic paralarvae implied metabolic increments higher than 100 %. Contrary to the nektobenthic strategy of cuttlefish newborns, the planktonic squid paralarvae rely predominantly on pulsed jet locomotion that dramatically increases their energy requirements. In the future, hatchlings will require more food per unit body size and, thus, feeding intake success will be crucial, especially for squid with high metabolic rates and low levels of metabolic reserves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...