GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-03-09
    Beschreibung: All types of applications of stable water isotopes, for example, for the reconstruction of paleotemperatures or for climate model validation, rely on a proper understanding of the mechanisms determining the isotopic composition of water vapor and precipitation. In this study, we use the isotope‐enabled limited‐area model COSMOiso to characterize the impacts of continental evapotranspiration, rainout, and subcloud processes on δD of European water vapor and precipitation. To this end, we first confirm a reliable implementation of the most important isotope fractionation processes in COSMOiso by comparing 5 years of modeled δD values with multiplatform δD observations from Europe (remote sensing observations of the δD of water vapor around 2.6 km above ground level, in situ δD measurements in near‐surface water vapor, and δD precipitation data from the Global Network of Isotopes in Precipitation). Based on six 15 year sensitivity simulations, we then quantify the climatological impacts of the different fractionation processes on the δD values. We find δD of European water vapor and precipitation to be most strongly controlled by rainout. Superimposed to this are the effect of subcloud processes, which especially affects δD in precipitation under warm conditions, and the effect of continental evapotranspiration, which exerts an important control over the δD of near‐surface water vapor. In future studies, the validated COSMOiso model can be employed in a similar way for a comprehensive interpretation of European isotope records from climatologically different time periods.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-12-14
    Beschreibung: Atmospheric water in form of vapor or clouds is responsible for ∼75 % of the natural greenhouse effect and carries huge amounts of latent heat. For this reason, a best possible description of the hydrological cycle is a prerequisite for reliable climate modelling. As the stable isotopes H216O, H218O and HDO differ in vapor pressure, they are fractionated during phase changes and contain information about the formation of precipitation, evaporation from the ground, etc. Therefore, the isotopic composition of atmospheric water is an useful tracer to test and improve our understanding of the extremely complex and variable hydrological cycle in Earth’s atmosphere. Within the project PalMod the isotope-enabled limited-area model COSMOiso will be used for high-resolution isotope simulations of paleo-climates. For validation with modern observations we compare 12 years of modelled isotope ratios from Central Europe to observations of the Global Network of Isotopes in Precipitation (GNIP) and to observations of isotope ratios of water vapor at different locations in Germany. We find a good agreement of modelled and observed isotope ratios in summer. In winter, we observe a systematic overestimation of modeled isotope ratios in precipitation and low-level water vapor. We relate those differences to specific circulation regimes with predominantly easterly moisture transport and the corresponding strong depen- dence of modelled isotope ratios on lateral boundary data. Furthermore, we investigate the dependence of modelled isotope ratios in winter on the type of isotope fractionation during surface evaporation at skin temperatures close to the freezing point.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-03-12
    Beschreibung: All types of applications of stable water isotopes, e.g. for the reconstruction of paleotemperatures or for climate model validation, rely on a proper understanding of the mechanisms determining the isotopic composition of water vapor and precipitation. In this study, we use the isotope-enabled limited-area model COSMOiso to characterize the impacts of continental evapotranspiration, rainout, and subcloud processes on δD of European water vapor and precipitation. To this end, we first confirm a reliable implementation of the most important isotope fractionation processes in COSMOiso by comparing 5 years of modeled δD values with multi-platform δD observations from Europe (remote sensing observations of the δD of water vapor around 2.6 km a.g.l., in situ δD measurements in near-surface water vapor, and δD precipitation data from the Global Network of Isotopes in Precipitation). Based on six 15 year sensitivity simulations, we then quantify the climatological impacts of the different fractionation processes on the δD values. We find δD of European water vapor and precipitation to be most strongly controlled by rainout. Superimposed to this are the effect of subcloud processes, which especially affects δD in precipitation under warm conditions, and the effect of continental evapotranspiration, which exerts an important control over the δD of near-surface water vapor. In future studies, the validated COSMOiso model can be employed in a similar way for a comprehensive interpretation of European isotope records from climatologically different time periods.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-04-01
    Beschreibung: We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid‐tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high‐resolution isotope‐enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2O and its isotopologue HDO (expressed as δD) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro‐meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2O, δD} distributions. The use of idealized process curves in the {H2O, δD} phase space allows us to attribute isotopic changes to contributions from (a) air mass mixing, (b) Rayleigh condensation during convection, and (c) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration in saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of {H2O, δD} over Africa and other regions in order to better quantify characteristics of the hydrological cycle.
    Beschreibung: Key Points: New Lagrangian framework to attribute variability in {H2O, δD} distributions to air mass mixing and phase changes of water. Application to West African Monsoon season 2016 shows characteristic mixing and precipitation effects along trajectories. New framework can be used for the interpretation of satellite and in‐situ observations, and for model validation in future work.
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: Swiss National Science Foundation
    Beschreibung: European Space Agency
    Beschreibung: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Beschreibung: Ministerium für Wissenschaft, Forschung und Kunst Baden‐Württemberg (MWK) http://dx.doi.org/10.13039/501100003542
    Schlagwort(e): ddc:551.5
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-12-15
    Beschreibung: Due to its dryness, the subtropical free troposphere plays a critical role in the radiative balance of the Earth's climate system. But the complex interactions of the dynamical and physical processes controlling the variability in the moisture budget of this sensitive region of the subtropical atmosphere are still not fully understood. Stable water isotopes can provide important information about several of the latter processes, namely subsidence drying, turbulent mixing, and dry and moist convective moistening. In this study, we use high-resolution simulations of the isotope-enabled version of the regional weather and climate prediction model of the Consortium for Small-Scale Modelling (COSMOiso) to investigate predominant moisture transport pathways in the Canary Islands region in the eastern subtropical North Atlantic. Comparison of the simulated isotope signals with multi-platform isotope observations (aircraft, ground- and space-based remote sensing) from a field campaign in summer 2013 shows that COSMOiso can reproduce the observed variability of stable water vapour isotopes on timescales of hours to days, thus allowing us to study the mechanisms that control the subtropical free-tropospheric humidity. Changes in isotopic signals along backward trajectories from the Canary Islands region reveal the physical processes behind the synoptic-scale isotope variability. We identify four predominant moisture transport pathways of mid-tropospheric air, each with distinct isotopic signatures: - air parcels originating from the convective boundary layer of the Saharan heat low (SHL) – these are characterised by a homogeneous isotopic composition with a particularly high δD (median mid-tropospheric δD=−122‰), which results from dry convective mixing of low-level moisture of diverse origin advected into the SHL; - air parcels originating from the free troposphere above the SHL – although experiencing the largest changes in humidity and δD during their subsidence over West Africa, these air parcels typically have lower δD values (median δD=−148‰) than air parcels originating from the boundary layer of the SHL; - air parcels originating from outside the SHL region, typically descending from tropical upper levels south of the SHL, which are often affected by moist convective injections from mesoscale convective systems in the Sahel – their isotopic composition is much less enriched in heavy isotopes (median δD=−175‰) than those from the SHL region; - air parcels subsiding from the upper-level extratropical North Atlantic – this pathway leads to the driest and most depleted conditions (median δD=−255‰) in the middle troposphere near the Canary Islands. The alternation of these transport pathways explains the observed high variability in humidity and δD on synoptic timescales to a large degree. We further show that the four different transport pathways are related to specific large-scale flow conditions. In particular, distinct differences in the location of the North African mid-level anticyclone and of extratropical Rossby wave patterns occur between the four transport pathways. Overall, this study demonstrates that the adopted Lagrangian isotope perspective enhances our understanding of air mass transport and mixing and offers a sound interpretation of the free-tropospheric variability of specific humidity and isotope composition on timescales of hours to days in contrasting atmospheric conditions over the eastern subtropical North Atlantic.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-05-02
    Beschreibung: Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones – socalled warm conveyor belts (WCBs) – play an important role in extratropical atmospheric dynamics. However on the subseasonal timescale, the modulation of their occurrence frequency, henceforth referred to as WCB activity, has so far received little attention. Also, it is not yet clear whether WCB activity may affect tropospheric teleconnection patterns, which constitute a source of predictability on this subseasonal timescale. Using reanalysis data, this study analyzes the modulation of WCB activity by the Madden–Julian Oscillation (MJO). A key finding is that WCB activity increases significantly over the western North Pacific when the convection of the MJO is located over the Indian Ocean. This increased WCB activity, which is stronger during La Niña conditions, is related to enhanced poleward moisture fluxes driven by the circulation of subtropical Rossby gyres associated with the MJO. In contrast, when the convection of the MJO is located over the western North Pacific, WCB activity increases significantly over the eastern North Pacific. This increase stems from a southward shift and eastward extension of the North Pacific jet stream. However, while these mean increases are significant, individual MJO events exhibit substantial variability, with some events even exhibiting anomalously low WCB activity. Individual events of the same MJO phase with anomalously low WCB activity over the North Pacific tend to be followed by the known canonical teleconnection patterns in the Atlantic–European region; i.e., the occurrence frequency of the positive phase of the North Atlantic Oscillation (NAO) is enhanced when convection of the MJO is located over the Indian Ocean and similarly for the negative phase of the NAO when MJO convection is over the western North Pacific. However, the canonical teleconnection patterns are modified when individual events of the same MJO phase are accompanied by anomalously high WCB activity over the North Pacific. In particular, the link between MJO and the negative phase of the NAO weakens considerably. Reanalysis data and experiments with an idealized general circulation model reveal that this is related to anomalous ridge building over western North America favored by enhanced WCB activity. Overall, our study highlights the potential role of WCBs in shaping tropical–extratropical teleconnection patterns and underlines the importance of representing them adequately in numerical weather prediction models in order to fully exploit the sources of predictability emerging from the tropics.
    Beschreibung: Published
    Beschreibung: Refereed
    Repository-Name: AquaDocs
    Materialart: Journal Contribution
    Format: pp.65-85
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...