GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 2 ( 2006-01-15), p. 153-192
    Kurzfassung: A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2006
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2004
    In:  Journal of Climate Vol. 17, No. 5 ( 2004-03), p. 906-929
    In: Journal of Climate, American Meteorological Society, Vol. 17, No. 5 ( 2004-03), p. 906-929
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2004
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2008
    In:  Geophysical Research Letters Vol. 35, No. 18 ( 2008-09-17)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 35, No. 18 ( 2008-09-17)
    Materialart: Online-Ressource
    ISSN: 0094-8276
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2008
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2011
    In:  Geophysical Research Letters Vol. 38, No. 6 ( 2011-03), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 38, No. 6 ( 2011-03), p. n/a-n/a
    Materialart: Online-Ressource
    ISSN: 0094-8276
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2011
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2016
    In:  Geophysical Research Letters Vol. 43, No. 10 ( 2016-05-28), p. 5345-5352
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 43, No. 10 ( 2016-05-28), p. 5345-5352
    Kurzfassung: Arctic sea ice loss is responsible for “Warm Arctic” but not for “Cold Continents” Recent “Cold Continents” are an extreme event of natural decadal variability Sea ice loss reduces temperature variability and risk of cold extremes in high‐latitude continents
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2016
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 3 ( 2007-02-01), p. 470-488
    Kurzfassung: The simulation of major midwinter stratospheric sudden warmings (SSWs) in six stratosphere-resolving general circulation models (GCMs) is examined. The GCMs are compared to a new climatology of SSWs, based on the dynamical characteristics of the events. First, the number, type, and temporal distribution of SSW events are evaluated. Most of the models show a lower frequency of SSW events than the climatology, which has a mean frequency of 6.0 SSWs per decade. Statistical tests show that three of the six models produce significantly fewer SSWs than the climatology, between 1.0 and 2.6 SSWs per decade. Second, four process-based diagnostics are calculated for all of the SSW events in each model. It is found that SSWs in the GCMs compare favorably with dynamical benchmarks for SSW established in the first part of the study. These results indicate that GCMs are capable of quite accurately simulating the dynamics required to produce SSWs, but with lower frequency than the climatology. Further dynamical diagnostics hint that, in at least one case, this is due to a lack of meridional heat flux in the lower stratosphere. Even though the SSWs simulated by most GCMs are dynamically realistic when compared to the NCEP–NCAR reanalysis, the reasons for the relative paucity of SSWs in GCMs remains an important and open question.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2007
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 6 ( 2015-03-15), p. 2154-2167
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 6 ( 2015-03-15), p. 2154-2167
    Kurzfassung: Arctic temperatures have risen dramatically relative to those of lower latitudes in recent decades, with a common supposition being that sea ice declines are primarily responsible for amplified Arctic tropospheric warming. This conjecture is central to a hypothesis in which Arctic sea ice loss forms the beginning link of a causal chain that includes weaker westerlies in midlatitudes, more persistent and amplified midlatitude waves, and more extreme weather. Through model experimentation, the first step in this chain is examined by quantifying contributions of various physical factors to October–December (OND) mean Arctic tropospheric warming since 1979. The results indicate that the main factors responsible for Arctic tropospheric warming are recent decadal fluctuations and long-term changes in sea surface temperatures (SSTs), both located outside the Arctic. Arctic sea ice decline is the largest contributor to near-surface Arctic temperature increases, but it accounts for only about 20% of the magnitude of 1000–500-hPa warming. These findings thus disconfirm the hypothesis that deep tropospheric warming in the Arctic during OND has resulted substantially from sea ice loss. Contributions of the same factors to recent midlatitude climate trends are then examined. It is found that pronounced circulation changes over the North Atlantic and North Pacific result mainly from recent decadal ocean fluctuations and internal atmospheric variability, while the effects of sea ice declines are very small. Therefore, a hypothesized causal chain of hemisphere-wide connections originating from Arctic sea ice loss is not supported.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 8 ( 2010-04-15), p. 2131-2145
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 8 ( 2010-04-15), p. 2131-2145
    Kurzfassung: In this study, the nature and causes for observed regional precipitation trends during 1977–2006 are diagnosed. It is found that major features of regional trends in annual precipitation during 1977–2006 are consistent with an atmospheric response to observed sea surface temperature (SST) variability. This includes drying over the eastern Pacific Ocean that extends into western portions of the Americas related to a cooling of eastern Pacific SSTs, and broad increases in rainfall over the tropical Eastern Hemisphere, including a Sahelian rainfall recovery and increased wetness over the Indo–West Pacific related to North Atlantic and Indo–West Pacific ocean warming. It is further determined that these relationships between SST and rainfall change are generally not symptomatic of human-induced emissions of greenhouse gases (GHGs) and aerosols. The intensity of regional trends simulated in climate models using observed time variability in greenhouse gases, tropospheric sulfate aerosol, and solar and volcanic aerosol forcing are appreciably weaker than those observed and also weaker than those simulated in atmospheric models using only observed SST forcing. The pattern of rainfall trends occurring in response to such external radiative forcing also departs significantly from observations, especially a simulated increase in rainfall over the tropical Pacific and southeastern Australia that are opposite in sign to the actual drying in these areas. Additional experiments illustrate that the discrepancy between observed and GHG-forced rainfall changes during 1977–2006 results mostly from the differences between observed and externally forced SST trends. Only weak rainfall sensitivity is found to occur in response to the uniform distribution of SST warming that is induced by GHG and aerosol forcing, whereas the particular pattern of the observed SST change that includes an increased SST contrast between the east Pacific and the Indian Ocean, and strong regional warming of the North Atlantic Ocean, was a key driver of regional rainfall trends. The results of this attribution study on the causes for 1977–2006 regional rainfall changes are used to discuss prediction challenges including the likelihood that recent rainfall trends might persist.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2010
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 7 ( 2016-04-01), p. 2313-2332
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 7 ( 2016-04-01), p. 2313-2332
    Kurzfassung: Time series of U.S. daily heavy precipitation (95th percentile) are analyzed to determine factors responsible for regionality and seasonality in their 1979–2013 trends. For annual conditions, contiguous U.S. trends have been characterized by increases in precipitation associated with heavy daily events across the northern United States and decreases across the southern United States. Diagnosis of climate simulations (CCSM4 and CAM4) reveals that the evolution of observed sea surface temperatures (SSTs) was a more important factor influencing these trends than boundary condition changes linked to external radiative forcing alone. Since 1979, the latter induces widespread, but mostly weak, increases in precipitation associated with heavy daily events. The former induces a meridional pattern of northern U.S. increases and southern U.S. decreases as observed, the magnitude of which closely aligns with observed changes, especially over the south and far west. Analysis of model ensemble spread reveals that appreciable 35-yr trends in heavy daily precipitation can occur in the absence of forcing, thereby limiting detection of the weak anthropogenic influence at regional scales. Analysis of the seasonality in heavy daily precipitation trends supports physical arguments that their changes during 1979–2013 have been intimately linked to internal decadal ocean variability and less so to human-induced climate change. Most of the southern U.S. decrease has occurred during the cold season that has been dynamically driven by an atmospheric circulation reminiscent of teleconnections linked to cold tropical eastern Pacific SSTs. Most of the northeastern U.S. increase has been a warm season phenomenon, the immediate cause for which remains unresolved.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2016
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 9 ( 2016-05-01), p. 3199-3218
    Kurzfassung: Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2016
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...