GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Ship-based acoustic Doppler current profiler (ADCP) velocity measurements collected by several major field programs in the tropical Atlantic are averaged and combined with estimates of the mean near-surface velocity derived from drifters and Argo float surface drifts (ADCP+D) to describe the mean cross-equatorial and vertical structure of the meridional currents along 23°W and 10°W. Data from moored ADCPs and fixed-depth current meters, a satellite-derived velocity product, and a global ocean reanalysis were additionally used to evaluate the mean ADCP+D meridional velocity. The dominant circulation features in the long-term mean ADCP+D meridional velocity in the upper 100 m are the tropical cells (TCs) located approximately between 5°S and 5°N, with near-surface poleward flow and subsurface equatorward flow that is stronger and shallower in the northern cell compared to the southern cell. The thickness of the surface limb of the TCs decreases and the northern cell is found to shift further south of the equator from the central to eastern tropical Atlantic. Analysis of two-season means estimated from the ship-based ADCP, near-surface drift, and moored velocity data, as well as the simulated fields, indicates that the maximum poleward velocity in the surface limb of the TCs intensifies during December–May along 23°W largely due to seasonal compensation between the geostrophic and ageostrophic (or wind-driven) components of the meridional velocity, whereas the maximum equatorward flow in the subsurface limb of the northern cell intensifies during June–November along both 23°W and 10°W due to the seasonality of the geostrophic meridional velocity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-08
    Description: State of the climate in 2019
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26 degrees N, 11 degrees S, SAMBA 34.5 degrees S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16 degrees N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The causes of the seasonal cycle of vertical turbulent cooling at the base of the mixed layer are assessed using observations from moored buoys in the tropical Atlantic Intertropical Convergence Zone (ITCZ) (4°N, 23°W) and trade wind (15°N, 38°W) regions together with mixing parameterizations and a one-dimensional model. At 4°N the parameterized turbulent cooling rates during 2017–2018 and 2019 agree with indirect estimates from the climatological mooring heat budget residual: both show mean cooling of 25–30 W m (Formula presented.) during November–July, when winds are weakest and the mixed layer is thinnest, and 0–10 W m (Formula presented.) during August–October. Mixing during November–July is driven by variability on multiple time scales, including subdiurnal, near-inertial, and intraseasonal. Shear associated with tropical instability waves (TIWs) is found to generate mixing and monthly mean cooling of 15–30 W m (Formula presented.) during May–July in 2017 and 2019. At 15°N the seasonal cycle of turbulent cooling is out of phase compared to 4°N, with largest cooling of up to 60 W m (Formula presented.) during boreal fall. However, the relationships between wind speed, mixed layer depth, and turbulent mixing are similar: weaker mean winds and a thinner mixed layer in the fall are associated with stronger mixing and turbulent cooling of SST. These results emphasize the importance of seasonal modulations of mixed layer depth at both locations and shear from TIWs at 4°N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-17
    Description: In the boreal summer of 2021, the equatorial Atlantic experienced the strongest warm event, that is, Atlantic Niño, since the beginning of satellite observations in the 1970s. Such events have far‐reaching impacts on large‐scale wind patterns and rainfall over the surrounding continents. Yet, developing a paradigm of how Atlantic Niño interacts with the upper‐ocean currents and intraseasonal waves remains elusive. Here we show that the equatorial Kelvin wave associated with the onset of the 2021 Atlantic Niño modulated both the background flow and the eddy flux of the equatorial upper‐ocean circulation, causing an extremely weak and delayed tropical instability wave (TIW) season. TIW‐induced variations of sea surface temperature (SST), sea surface salinity, sea surface height, and eddy temperature advection were exceptionally weak during May to July, the climatological peak of TIW activity, but rebounded in August when higher than normal variability was observed. Moored velocity data at 23°W show that during the peak of the 2021 Atlantic Niño from June to August, the Equatorial Undercurrent was deeper and stronger than usual. An anomalously weak eddy momentum flux strongly suppressed barotropic energy conversion north of the equator from May to July, likely contributing to low TIW activity. Reduced baroclinic energy conversion also might have played a role, as the meridional gradient of SST was sharply reduced during the Atlantic Niño. Despite extremely weak TIW velocities, modest intraseasonal variability of chlorophyll‐a (Chl‐ a ) was observed during the Atlantic Niño, due to pronounced meridional Chl‐ a gradients that partly compensated for the weak TIWs. Plain Language Summary Every few years the eastern equatorial Atlantic Ocean is significantly warmer than usual during boreal summer. Such warm events are referred to as Atlantic Niño events, and share similarities with El Niño events in the Pacific. In 2021, the strongest Atlantic Niño in at least four decades was observed in the equatorial Atlantic. This study is the first that investigates the complex interaction between Atlantic Niño, tropical Atlantic upper‐ocean currents, and equatorial waves based on various observational data sets. We show that the developing 2021 Atlantic Niño weakened both the background flow and the variability of near‐surface currents in May, which in turn largely reduced the strength of intraseasonal (20–50 days) waves that are usually generated by instability of the upper‐ocean zonal currents. As a consequence, the cooling effect that these waves usually have north of the equator and the warming effect along the equator vanished from May to July 2021. Interestingly, variability of chlorophyll concentration was enhanced, suggesting that enhanced meridional chlorophyll gradients compensated for reduced wave activity. Key Points The developing 2021 Atlantic Niño led to weaker equatorial surface currents and reduced vertical shear of upper‐ocean horizontal velocity Strong reduction of the surface flow, eddy flux, and meridional temperature gradient in May caused extremely weak and delayed tropical instability wave (TIW) season Reduced meridional TIW advection contributed to sharpen the north equatorial Chl‐ a front resulting in modest intraseasonal Chl‐ a variability
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The excess heat absorbed from the atmosphere has increased the temperature in the upper layers of the ocean (〈2,000 m). In the abyss, infrequently repeated ship sections, deep Argo float measurements, and sparse moored observations have found signs of warming in the Southwest Atlantic, possibly linked to changes in the Weddell Sea. We present a new moored temperature time series sampled near the bottom in the Vema Channel, from February 2019 to August 2020. Together with historical data, the combined record confirms the warming of the abyssal waters, with an increase of 0.059°C in potential temperature between January 1991 and August 2020, embedded within intense high-frequency variability. Moreover, the data suggest the possibility of an accelerated warming, with a change in the temperature trend from 0.0016°C yr−1, between the early 1990s and 2005, to 0.0026°C yr−1 afterwards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Tropical Instability Waves (TIWs) are the dominant source of intraseasonal variability in the central equatorial Atlantic and play an important role in the redistribution of heat in the upper ocean. Here we use multidecadal records of sea surface temperature, sea level anomaly, sea surface salinity, and near-surface currents constructed from in situ and satellite observations to reveal a long-term intensification of the intraseasonal variability of these variables due to an increase of TIW activity. Enhanced barotropic energy conversion from increased covariance of horizontal current fluctuations, rather than low-frequency changes of the mean zonal currents, drives the TIW intensification. As a consequence, boreal summer cooling of tropical North Atlantic surface waters through horizontal eddy temperature advection increased by 0.03°C month−1 decade−1 during 1993–2021, a change of 74% ± 53% relative to the long-term mean. The presented multidecadal TIW trends are strongly modulated by interannual variations like the 2021 Atlantic Niño. Key Points: - In situ and satellite observations show a long-term intensification of Tropical Instability Waves (TIWs) in the tropical North Atlantic - Enhanced TIW activity is mainly due to increased barotropic instability associated with increased covariance of velocity fluctuations - As a result, TIW-driven sea surface cooling north of the equator due to eddy temperature advection has increased by 74% from 1993 to 2021
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...