GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 71 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract When a cellobiose-grown inoculum of Clostridium thermocellum was transferred to either glucose or fructose as the sole carbon sourcem growth occurred only after a long lag of 180–200 h. We established that sugar uptake and phosphorylation were not limiting growth nor was the lag period the time take for a physiological adaptation process or for the growth of a mutant carried over in the cellibiose-grown incoculum. It became apparent that a mutation was occuring during the lag period in response to the selection pressure exerted by the presence of glucose or fructose as the sole carbon source. Once growth occurred on glucose and fructose, the cells could be transferred to cellobiose and back to glucose or fructose without exhibiting the long lag period. The change was stable over several transfers in the respective sugars.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 15 (1993), S. 641-646 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Clostridium thermocellum produced different levels of true cellulase (“Avicelase”) depending on the carbon source used for growth. In defined medium with fructose, the cellulase titer was seven times higher than with cells growing on cellobiose and four times higher than cells growing with glucose. During the lag phase on fructose, the differences were even more dramatic, i.e. 60 times higher than in cells growing on cellobiose and 40 times that of cells lagging or growing in glucose. In an attempt to detect factors that might contribute to these differences, we considered intracellular ATP, chemical potential (ΔpH), electrical potential (ΔY), proton motive force (Δp), growth rate, and rates of uptake of inorganic phosphate and sugars. We noted a direct correlation between cellulase production and intracellular ATP levels and an inverse relationship of cellulase production with ΔY and Δp values. It thus appears that cellulase is best produced by cells high in ATP and low in Dp and its electrical component DY. There was no obvious relationship between the cellulase titer and the other parameters. Although the physiological significance of such correlations is unknown, the data suggest that further investigation is warranted.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...