GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 24 (2004), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Species invasions are extremely common and are vastly outpacing the ability of resource agencies to address each invasion, one species at a time. Management actions that target the whole landscape or ecosystem may provide more cost-effective protection against the establishment of invasive species than a species-by-species approach. To explore what ecosystem-level actions might effectively reduce invasions, we developed a multispecies, multihabitat metapopulation model. We assume that species that successfully establish themselves outside their native range tend to be habitat generalists and that a tradeoff exists between competitive ability and habitat breadth, such that habitat specialists are competitively superior to habitat generalists. In this model, habitat destruction, fragmentation, and short-term disturbances all favor invasion by habitat generalists, despite the inferior competitive abilities of generalist species. Our model results illustrate that providing relatively undisturbed habitat and preventing further habitat degradation and fragmentation can provide a highly cost-effective defense against invasive species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 24 (2004), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: All else being equal, the faster an invading species spreads, the more dangerous its invasion. The projection of spread rate therefore ought to be a central part of the determination of invasion risk. Originally formulated in the 1970s to describe the spatial spread of advantageous alleles, integrodifference equation (IDE) models have since been co-opted by population biologists to describe the spread of populations. More recently, they have been modified to include population structure and environmental variability. We review how IDE models are formulated, how they are parameterized, and how they can be analyzed to project spread rates and the sensitivity of those rates to changes in model parameters. For illustrative purposes, we apply these models to Cytisus scoparius, a large shrub in the legume family that is considered a noxious invasive species in eastern and western North America, Chile, Australia, and New Zealand.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 59 (1997), S. 787-807 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 41 (2000), S. 103-121 
    ISSN: 1432-1416
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract. We explore a set of simple, nonlinear, two-stage models that allow us to compare the effects of density dependence on population dynamics among different kinds of life cycles. We characterize the behavior of these models in terms of their equilibria, bifurcations, and nonlinear dynamics, for a wide range of parameters. Our analyses lead to several generalizations about the effects of life history and density dependence on population dynamics. Among these are: (1) iteroparous life histories are more likely to be stable than semelparous life histories; (2) an increase in juvenile survivorship tends to be stabilizing; (3) density-dependent adult survival cannot control population growth when reproductive output is high; (4) density-dependent reproduction is more likely to cause chaotic dynamics than density dependence in other vital rates; and (5) changes in development rate have only small effects on bifurcation patterns.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2005. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in American Naturalist 166 (2005): 669-685, doi:10.1086/497621
    Description: Here we study the spatial dynamics of a coinvading consumer-resource pair. We present a theoretical treatment with extensive empirical data from a long-studied field system in which native herbivorous insects attack a population of lupine plants recolonizing a primary successional landscape created by the 1980 volcanic eruption of Mount St. Helens. Using detailed data on the life history and interaction strengths of the lupine and one of its herbivores, we develop a system of integrodifference equations to study plant-herbivore invasion dynamics. Our analyses yield several new insights into the spatial dynamics of coinvasions. In particular, we demonstrate that aspects of plant population growth and the intensity of herbivory under low-density conditions can determine whether the plant population spreads across a landscape or is prevented from doing so by the herbivore. In addition, we characterize the existence of threshold levels of spatial extent and/or temporal advantage for the plant that together define critical values of "invasion momentum," beyond which herbivores are unable to reverse a plant invasion. We conclude by discussing the implications of our findings for successional dynamics and the use of biological control agents to limit the spread of pest species.
    Description: This effort would not have been possible without the support of the National Science Foundation through its Mathematical Biology and Ecological Studies programs (awards NSF OCE-9973212, DEB-9973518, DEB-0235692, and DEB-0089843). The University of Maryland, Washington State University–Vancouver, and the Banff International Research Station for Mathematical Innovation and Discovery provided additional support. M.L. acknowledges support from Mathematics of Information Technology and Complex Systems Canada, a Natural Sciences and Engineering Research Council operating grant, a Contract Research Organisation grant, and a Canada Research Chair.
    Keywords: Biocontrol ; Filatima ; Integrodifference equation model ; Lupinus lepidus ; Primary succession ; Spatial spread
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2307684 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Theoretical Population Biology 71 (2007): 436-444, doi:10.1016/j.tpb.2007.02.002.
    Description: It takes time for individuals to move from place to place. This travel time can be incorporated into metapopulation models via a delay in the interpatch migration term. Such a term has been shown to stabilize the positive equilibrium of the classical Lotka-Volterra predator{prey system with one species (either the predator or the prey) dispersing. We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying capacity for the prey, and saturating functional response for the predator. We show that dispersal delays can stabilize the predator{prey equilibrium point despite the presence of a Type II functional response that is known to be destabilizing. We also show that dispersal delays reduce the amplitude of oscillations when the equilibrium is unstable, and therefore may help resolve the paradox of enrichment.
    Description: MGN and PK were supported by grants from the National Science Foundation (OCE-0083976, DEB-0235692, DEB-9973212) and Environmental Protection Agency (R-82908901-0). The research of PvdD is partially supported by NSERC and MITACS.
    Keywords: Delay-differential equations ; Distributed delay ; MacArthur-Rosenzweig model ; Metapopulation dynamics ; Paradox of enrichment ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Natural Resource Modeling 28 (2015): 456-474, doi:10.1111/nrm.12075.
    Description: Marine reserves are an increasingly used and potentially contentious tool in fisheries management. Depending upon the way that individuals move, no-take marine reserves can be necessary for maximizing equilibrium rent in some simple mathematical models. The implementation of no-take marine reserves often generates a redistribution of fishing effort in space. This redistribution of effort, in turn, produces sharp spatial gradients in mortality rates for the targeted stock. Using a two-patch model, we show that the existence of such gradients is a sufficient condition for the evolution of an evolutionarily stable conditional dispersal strategy. Thus, the dispersal strategy of the fish depends upon the harvesting strategy of the manager and vice versa. We find that an evolutionarily stable optimal harvesting strategy (ESOHS)—one which maximizes equilibrium rent given that fish disperse in an evolutionarily stable manner– - never includes a no-take marine reserve. This strategy is economically unstable in the short run because a manager can generate more rent by disregarding the possibility of dispersal evolution. Simulations of a stochastic evolutionary process suggest that such a short-run, myopic strategy performs poorly compared to the ESOHS over the long run, however, as it generates rent that is lower on average and higher in variability.
    Description: This material is based upon work supported by funding from: The Woods Hole Oceanographic Institution's Investment in Science Fund to MGN; The Recruitment Program of Global Experts to YL; The University of Tennessee Center for Business and Economics Research to SL; and the U.S. National Science Foundation (NSF) through grants OCE-1031256, DEB-1257545, and DEB-1145017 to MGN, CNH-0707961 to GEH, DMS-1411476 to YL; and NSF Graduate Research Fellowships under Grant No. 1122374 to EAM and ES.
    Keywords: Evolution of dispersal ; Evolutionarily stable strategy ; Fisheries management ; Marine protected areas ; Optimal harvesting
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Ecology 99 (2018): 2374-2384, doi:10.1002/ecy.2480.
    Description: The spatial distribution of relatives has profound e ects on kin interactions, inbreeding, and inclusive tness. Yet, in the marine environment, the processes that generate patterns of kin structure remain understudied because larval dispersal on ocean currents was historically assumed to disrupt kin associations. Recent genetic evidence of co-occurring siblings challenges this assumption and raises the intriguing question of how siblings are found together after a (potentially) disruptive larval phase. Here, we develop individual based models to explore how stochastic processes operating at the individual level a ect expected kinship at equilibrium. Speci cally, we predict how limited dispersal, sibling cohesion, and variability in reproductive success di erentially a ect patterns of kin structure. All three mechanisms increase mean kinship within populations, but their spatial e ects are markedly di erent. We nd that: (1) when dispersal is limited, kinship declines monotonically as a function of the distance between individuals; (2) when siblings disperse cohesively, kinship increases within a site relative to between sites; and (3) when reproductive success varies, kinship increases equally at all distances. The di erential e ects of these processes therefore only become apparent when individuals are sampled at multiple spatial scales. Notably, our models suggest that aggregative larval behaviors, such as sibling cohesion, are not necessary to explain documented levels of relatedness within marine populations. Together, these ndings establish a theoretical framework for disentangling the drivers of marine kin structure.
    Description: CCD was supported by a Weston Howland Jr. Postdoctoral Scholarship from WHOI. MGN was supported by a grant from the US NSF (DEB-1558904).
    Keywords: Individual based model ; Relatedness ; Collective dispersal ; Aggregated dispersal ; Sweepstakes reproductive success ; Kinship ; Larval dispersal ; Marine ecology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Ecological Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2683-2688, doi:10.1890/08-2014.1.
    Description: By definition, ecological systems at a stable equilibrium eventually return to the equilibrium point following a small perturbation. In the short term, however, perturbations can grow. Equilibria that exhibit transient growth following perturbation are said to be reactive. In this report, we present a statistical method for detecting reactivity from multivariate time series. The test is simple and computationally tractable, and it can be applied to short time series. Its main limitation is that it is based on a model of population dynamics that is linear on a logarithmic scale. Our results suggest that the test is robust when the dynamics are nonlinear on the log scale but that it may incorrectly classify an equilibrium as reactive when the reactivity is close to zero.
    Description: This research was supported by a grant (DEB-0515639) from the U.S. National Science Foundation.
    Keywords: Multivariate time series ; Resilience ; Stability ; Transient dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Theoretical Ecology 5 (2012): 167-179, doi:10.1007/s12080-010-0106-9.
    Description: Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.
    Description: Financial support was provided by the Woods Hole Oceanographic Institution Academic Programs Office; National Science Foundation grants OCE-0326734, OCE- 0215905, OCE-0349177, DEB-0235692, DEB-0816514, DMS- 0532378, OCE-1031256, and ATM-0428122; and by National Oceanic and Atmospheric Administration National Sea Grant College Program Office, Department of Commerce, under Grant No. NA86RG0075 (Woods Hole Oceanographic Institution Sea Grant Project No. R/0-32), and Grant No. NA16RG2273 (Woods Hole Oceanographic Institution Sea Grant Project No. R/0-35).
    Keywords: Metapopulation ; Patch dynamics ; Disturbance ; Matrix population model ; Stage-structured ; Mya arenaria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...