GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2036
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background:  The rate of metabolic inactivation of proton-pump inhibitors is determined by polymorphisms of CYP2C19. It is not known if CYP2C19 variant alleles affect responses to proton-pump inhibitor therapy in gastro-oesophageal reflux disease (GERD).Aim:  To determine if the CYP2C19 genotype is associated with clinical effectiveness of proton-pump inhibitors during GERD therapy.Methods:  GERD patients undergoing ambulatory gastric and oesophageal pH monitoring were genotyped for CYP2C19 polymorphisms.Results:  Sixty subjects were enrolled. Forty-four subjects had two wild-type alleles, 15 had one variant, and one had two variant CYP2C19 alleles. The presence of a variant allele was significantly associated with a lower odds of gastric acid breakthrough during proton-pump inhibitor therapy [odds ratio 5.14, 95% confidence interval (CI) 1.17–22.61]. The presence of a variant allele was not associated with a lower odds of significant oesophageal acid exposure (odds ratio 2.50, 95% CI 0.60–10.52), or the occurrence of symptoms (incidence rate ratio 1.06, 95% CI 0.54–2.06).Conclusions:  These results indicate that factors other than gastric acid secretion are important determinants of reflux in GERD patients. This suggests that CYP2C19 genotype testing will not be useful in proton-pump inhibitor therapy of GERD, except perhaps in identifying patients at risk for hypochlorhydria and consequent hypergastrinemia.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble-released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4–3.8 nmol m−2 s−1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long-term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-08-31
    Description: Peng et al. (1) conclude that a fast increase in the mass absorption cross-section (MAC) of black carbon (BC) in urban environments leads to significantly increased estimates of the BC radiative forcing (RF). Their chamber measurements are highly valuable and complement observations performed in ambient conditions, but their “enhancement factor”...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-29
    Description: The precipitation adjustment and feedback framework is a useful tool for understanding global and regional precipitation change. However, there is no definitive method for making the decomposition. In this study we highlight important differences which arise in results due to methodological choices. The responses to five different forcing agents (CO2, CH4, SO4, black carbon, and solar insolation) are analysed using global climate model simulations. Three decomposition methods are compared: using fixed sea surface temperature experiments (fSST), regressing transient climate change after an abrupt forcing (regression), and separating based on timescale using the first year of coupled simulations (YR1). The YR1 method is found to incorporate significant SST driven feedbacks into the adjustment, and is therefore not suitable for making the decomposition. Globally, the regression and fSST methods produce generally consistent results, however the regression values are dependent on the number of years analysed, and have considerably larger uncertainties. Regionally, there are substantial differences between methods. The pattern of change calculated using regression completely reverses sign in many regions as the number of years analysed increases. This makes it difficult to establish what effects are included in the decomposition. The fSST method provides a more clear-cut separation in terms of what physical drivers are included in each component. The fSST results are less affected by methodological choices, and exhibit much less variability. We find that the precipitation adjustment is weakly affected by the choice of SST climatology.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-17
    Description: Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and 5 the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol 10 models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over 15 the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...