GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2005
    In:  Ocean Dynamics Vol. 55, No. 5-6 ( 2005-12), p. 391-402
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 55, No. 5-6 ( 2005-12), p. 391-402
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2005
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Continental Shelf Research, Elsevier BV, Vol. 26, No. 19 ( 2006-12), p. 2393-2414
    Type of Medium: Online Resource
    ISSN: 0278-4343
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 2025704-1
    detail.hit.zdb_id: 780256-0
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 457, No. 7229 ( 2009-1), p. 581-584
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-03-15), p. 457-593
    Abstract: Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2013
    In:  Journal of the Marine Biological Association of the United Kingdom Vol. 93, No. 6 ( 2013-09), p. 1625-1640
    In: Journal of the Marine Biological Association of the United Kingdom, Cambridge University Press (CUP), Vol. 93, No. 6 ( 2013-09), p. 1625-1640
    Abstract: Many Thecosomata (Gastropoda) produce an aragonite shell and are potentially threatened by the increasing ocean acidification. Information about these species is very important for future monitoring of the fate of this group. This paper investigates the distribution, species composition and trophic role of Thecosomata along a transect from the coast into the open ocean off Walvis Bay, Namibia, in September 2010 and January/February 2011. Twenty species were detected, but three taxa ( Limacina bulimoides , Limacina inflata and Desmopterus papilio ) dominated the community with more than 80% of the total standing stock. Diel vertical migration was observed for both Limacina taxa with higher concentrations in surface waters during night. Desmopterus papilio revealed almost no day/night differences. The highest diversities and abundances were detected at the slope and offshore stations, indicating the oceanic preference of this group; some taxa aggregated at the shelf–open ocean interface. δ 15 N measurements confirmed the first trophic level of this group; however, significant differences were detected between seasons with higher values in February 2011. This can be related to differences in seston values as the primary food source. Possible biogeochemical causes for these differences like an exhaustion of the nitrate pool or denitrification processes under suboxic conditions are discussed.
    Type of Medium: Online Resource
    ISSN: 0025-3154 , 1469-7769
    RVK:
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2013
    detail.hit.zdb_id: 1491269-7
    detail.hit.zdb_id: 281325-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Geochimica et Cosmochimica Acta, Elsevier BV, Vol. 358 ( 2023-10), p. 174-191
    Type of Medium: Online Resource
    ISSN: 0016-7037
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 300305-X
    detail.hit.zdb_id: 1483679-8
    SSG: 13
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Data Vol. 9, No. 1 ( 2022-08-03)
    In: Scientific Data, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2022-08-03)
    Abstract: Ocean turbulent mixing is a key process in the global climate system, regulating ocean circulation and the uptake and redistribution of heat, carbon, nutrients, oxygen and other tracers. In polar oceans, turbulent heat transport additionally affects the sea ice mass balance. Due to the inaccessibility of polar regions, direct observations of turbulent mixing are sparse in the Arctic Ocean. During the year-long drift expedition “Multidisciplinary drifting Observatory for the Study of Arctic Climate” (MOSAiC) from September 2019 to September 2020, we obtained an unprecedented data set of vertical profiles of turbulent dissipation rate and water column properties, including oxygen concentration and fluorescence. Nearly 1,700 profiles, covering the upper ocean down to approximately 400 m, were collected in sets of 3 or more consecutive profiles every day, and complemented with several intensive sampling periods. This data set allows for the systematic assessment of upper ocean mixing in the Arctic, and the quantification of turbulent heat and nutrient fluxes, and can help to better constrain turbulence parameterizations in ocean circulation models.
    Type of Medium: Online Resource
    ISSN: 2052-4463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2775191-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Elem Sci Anth, University of California Press, Vol. 10, No. 1 ( 2022-02-07)
    Abstract: Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2022
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Physical Oceanography ( 2021-07-28)
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-07-28)
    Abstract: Spatial and temporal variations of nutrient-rich upwelled water across the major eastern boundary upwelling systems are primarily controlled by the surface wind with different, and sometimes contrasting, impacts on coastal upwelling systems driven by alongshore wind and offshore upwelling systems driven by the local wind-stress-curl. Here, concurrently measured wind-fields, satellite-derived Chlorophyll-a concentration along with a state-of-the-art ocean model simulation spanning 2008-2018 are used to investigate the connection between coastal and offshore physical drivers of the Benguela Upwelling System (BUS). Our results indicate that the spatial structure of long-term mean upwelling derived from Ekman theory and the numerical model are fairly consistent across the entire BUS and closely followed by the Chlorophyll-a pattern. The variability of the upwelling from the Ekman theory is proportionally diminished with offshore distance, whereas different and sometimes opposite structures are revealed in the model-derived upwelling. Our result suggests the presence of sub-mesoscale activity (i.e., filaments and eddies) across the entire BUS with a large modulating effect on the wind-stress-curl-driven upwelling off Lüderitz and Walvis Bay. In Kunene and Cape Frio upwelling cells, located in the northern sector of the BUS, the coastal upwelling and open-ocean upwelling frequently alternate each other, whereas they are modulated by the annual cycle and mostly in phase off Walvis Bay. Such a phase relationship appears to be strongly seasonally dependent off Lüderitz and across the southern BUS. Thus, our findings suggest this relationship is far more complex than currently thought and seems to be sensitive to climate changes with short- and far-reaching consequences for this vulnerable marine ecosystem.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Change Biology, Wiley, Vol. 25, No. 3 ( 2019-03), p. 794-810
    Abstract: Changes in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N 2 ‐fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous. Here, we use a set of proxies derived from amino acid nitrogen stable isotopes from two mesozooplankton size fractions to identify changes in the nitrogen source and the planktonic food web structure across different microplankton communities. A transition from herbivory to carnivory in mesozooplankton between more eutrophic, near‐coastal sites and more oligotrophic, offshore sites was accompanied by an increasing diversity of microplankton communities with aging filamentous cyanobacterial blooms. Our analyses of 124 biotic and abiotic variables using multivariate statistics confirmed salinity as a major driver for the biomass distribution of non‐N 2 ‐fixing microplankton species such as dinoflagellates. However, we provide strong evidence that stratification, N 2 fixation, and the stage of the cyanobacterial blooms regulated much of the microplankton diversity and the mean trophic position and size of the metabolic nitrogen pool in mesozooplankton. Our empirical, macroscale data set consistently unifies contrasting results of the dominant feeding mode in mesozooplankton during blooms of unpalatable, filamentous, N 2 ‐fixing cyanobacteria by identifying the at times important role of heterotrophic microbial food webs. Thus, carnivory, rather than herbivory, dominates in mesozooplankton during aging and decaying cyanobacterial blooms with hitherto uncharacterized consequences for the biogeochemical functions of mesozooplankton.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...