GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society". , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy.
    Publication Date: 2012-07-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-21
    Description: The addition of offshore wind farms (OWFs) to stratified regions of shelf seas poses an anthropogenic source of turbulence, in which the foundation structures remove power from the oceanic flow that is fed into turbulent mixing in the wake downstream. The loss of stratification within the wake of a single OWF structure is observed for the first time by means of field observations, which enable a qualitative characterization of the disturbed flow downstream. These results are complemented with high‐resolution large eddy simulations of four different stratification strengths that allow for a quantification of turbulence and mixing quantities in the wake of a foundation structure. The turbulent wake of a structure is narrow and highly energetic within the first 100 m, with the dissipation of turbulent kinetic energy well above background levels downstream of the structure. A single monopile is responsible for 7–10% additional mixing to that of the bottom mixed layer, whereby ∼10% of the turbulent kinetic energy generated by the structure is used in mixing. Although the effect of a single turbine on stratification is relatively low, large‐scale OWFs could significantly affect the vertical structure of a weakly stratified water column. Further, rough estimates show that the rate of formation of stratification in the study area is of the same order of magnitude as the additional mixing promoted by the structures, thus OWFs could modify the stratification regime and water column dynamics on a seasonal scale, depending on local conditions and farm geometries.
    Description: Plain Language Summary: Advances in the renewable energy sector have enabled the construction and operation of wind farms in bodies of water deep enough to present vertical temperature differences across the water column or thermal stratification. In coastal regions dominated by tidal motion, the presence of offshore wind farm (OWF) structures brings about additional turbulence and mixing of stratification. The present study combines field measurements and numerical simulations to characterize the wake of single OWF structures and quantify the amount of turbulence and mixing generated by them. Our results suggest that the effect of OWF structures is small compared to other naturally occurring mixing mechanisms, however can be comparable to the rate of stratification buildup. Stratification in certain regions of shelf seas could be impacted by OWFs if these are built over a large area.
    Description: Key Points: Enhanced mixing and disturbed stratification in the wake of monopiles is traceable in field and turbulence‐resolving numerical experiments Elevated turbulent dissipation and mixing are found in a narrow region downstream of monopiles, with a bulk mixing efficiency of 8–14% The enhanced mixing generated by the offshore wind farm structures could contribute to significant changes in stratification in shelf seas
    Description: Helmholtz Foundation
    Keywords: 551.46 ; stratification ; mixing ; offshore wind farms ; monopiles ; mixing efficiency ; tidal shelf seas
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-02
    Description: In energetic, tidally-forced, shelf seas there is a delicate balance between the formation of stratification by solar insolation and the mixing produced by the different turbulence sources. The accurate modelling of the evolution of stratification by these processes is important for the ecosystem functioning, and in particular the formation of the subsurface chlorophyll maximum (SCM). We argue first, that the formation of the SCM is fuelled with the nutrients from deeper waters transported by the turbulence locally generated within the strongly stratified base of the pycnocline. Second, that this turbulence production can arise entirely from tidally-driven currents in the bottom boundary layer and does not require wind forced near-inertial motions. Turbulent mixing is produced through the interaction between a highly sheared pycnocline base that is close to marginal stability and large-scale eddies that are formed within in the bottom boundary layer. These eddies are the size of the bottom boundary layer and periodically supply enough shear to trigger instability, thus providing the mechanism for mixing nutrients into the SCM in this way. These insights are provided by both observations using autonomous ocean gliders equipped with turbulence microstructure sensors, as well as highly-resolved large eddy simulations. The specific conditions examined are typical for extensive regions of the inner North Sea, with data presented from the German Bight, as well as other shallow shelf seas that have strong tidal currents.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...