GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: TorsinA, a protein with homology to yeast heat shock protein104, has previously been demonstrated to colocalize with α-synuclein in Lewy bodies, the pathological hallmark of Parkinson's disease. Heat shock proteins are a family of chaperones that are both constitutively expressed and induced by stressors, and that serve essential functions for protein refolding and/or degradation. Here, we demonstrate that, like torsinA, specific molecular chaperone heat shock proteins colocalize with α-synuclein in Lewy bodies. In addition, using a cellular model of α-synuclein aggregation, we demonstrate that torsinA and specific heat shock protein molecular chaperones colocalize with α-synuclein immunopositive inclusions. Further, overexpression of torsinA and specific heat shock proteins suppress α-synuclein aggregation in this cellular model, whereas mutant torsinA has no effect. These data suggest that torsinA has chaperone-like activity and that the disease-associated GAG deletion mutant has a loss-of-function phenotype. Moreover, these data support a role for chaperone proteins, including torsinA and heat shock proteins, in cellular responses to neurodegenerative inclusions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 77 (2001), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: α-Synuclein is a major component of Lewy bodies, a neuropathological feature of Parkinson's disease. Two α-synuclein mutations, Ala53Thr and Ala30Pro, are associated with early onset, familial forms of the disease. Recently, synphilin-1, a protein found to interact with α-synuclein by yeast two hybrid techniques, was detected in Lewy bodies. In this study we report the interaction of α-synuclein and synphilin-1 in human neuroglioma cells using a sensitive fluorescence resonance energy transfer technique. We demonstrate that the C-terminus of α-synuclein is closely associated with the C-terminus of synphilin-1. A weak interaction occurs between the N-terminus of α-synuclein and synphilin-1. The familial Parkinson's disease associated mutations of α-synuclein (Ala53Thr and Ala30Pro) also demonstrate a strong interaction between their C-terminal regions and synphilin-1. However, compared with wild-type α-synuclein, significantly less energy transfer occurs between the C-terminus of Ala53Thr α-synuclein and synphilin-1, suggesting that the Ala53Thr mutation alters the conformation of α-synuclein in relation to synphilin-1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The ability of nerve cells to regulate the expression of specific neurotransmitter receptors is of central importance to nervous system function, but little is known about the DNA elements that mediate neuron specific gene expression. The type A γ-aminobutyric acid (GABAA) receptor α6-subunit gene, which is expressed exclusively in cerebellar granule cells, presents a unique opportunity to study the cis elements involved in restricting gene expression to a distinct neuronal population. In an effort to identify the regulatory elements that govern cerebellar granule cell-specific gene expression, the proximal 5′ flanking regions for the human, rat, and mouse α6 genes were cloned and sequenced, and a major transcriptional initiation site was identified in the rodent genes. Functional analysis of rat α6 gene-reporter constructs in primary neuronal cultures reveals that a 155-bp TATA-less promoter region (-130 to +25 bp) constitutes a minimal promoter that can drive cerebellar granule cell-specific expression. Internal deletion and decoy competition studies demonstrate that the minimal promoter contains a 60-bp region (-130 to -70 bp) that is critical for enhanced promoter activity in cerebellar granule cells. Activity of the compromised promoter containing the deletion cannot be rescued by placing the 60-bp region downstream of the reporter gene, demonstrating that it is not a classical enhancer but rather a positionally dependent regulator. An additional cerebellar-specific activating sequence is located between -324 and -130 bp, and a downstream negative regulatory region (+158 to +294) has been shown to be active in fibroblasts but inactive in cerebellar granule cells. Taken together, the results suggest a possible mechanism for the control of cerebellar granule cell-specific expression of the GABAA receptor α6 subunit gene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...