GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We have recently shown that brain slices are capable of metabolizing arachidonic acid by the epoxy-genase pathway. The purpose of this study was to begin to determine the ability of individual brain cell types to form epoxygenase metabolites. We have examined the astrocyte epoxygenase pathway and have also confirmed metabolism by the cyclooxygenase and lipoxygenase enzyme systems. Cultured rat hippocampal astrocyte homogenate, when incubated with radiolabeled [3H]-arachidonic acid, formed products that eluted in four major groups designated as R17–30, R42–50, R51–82, and R83–90 based on their retention times in reverse-phase HPLC. These fractions were further segregated into as many as 13 peaks by normal-phase HPLC and a second reverse-phase HPLC system. The principal components in each peak were structurally characterized by gas chromatography/electron impact-mass spectrometry. Based on HPLC retention times and gas chromatography/electron impactmass spectrometry analysis, the more polar fractions (R17–30) contained prostaglandin D2 as the major cyclooxygenase product. Minor products included 6-keto prostaglandin F1α, prostaglandin E2, prostaglandin F2α, and thromboxane B2. Fractions R42–50, R51–82. and R83–90 contained epoxygenase and lipoxygenase-like products. The major metabolite in fractions R83–90 was 5, 6-epoxyeicosatrienoic acid (EET). Fractions R51–82 contained 14, 15-and 8, 9-EETs, 12-and 5-hydroxyeicosatetraenoic acids, and 8, 9-and 5, 6-dihydroxyeicosatrienoic acids (DHETs). In fractions R42–50, 14, 15-DHET was the major product. When radiolabeled [3H]14, 15-EET was incubated with astrocyte homogenate, it was rapidly metabolized to [3H]14, 15-DHET. The metabolism was inhibited by submicromolar concentration of 4-phenylchalcone oxide, a potent inhibitor of epoxide hydrolase activity. Formation of other polar metabolites such as triols or epoxyalcohols from 14, 15-DHET was not observed. In conclusion, astro-cytes readily metabolize arachidonic acid to 14, 15-EET, 5, 6-EET, and their vicinal-diols. Previous studies suggest these products may affect neuronal function and cerebral blood flow.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The primary objective of this study was to determine the influence of stretch-induced cell injury on the metabolism of cellular phosphatidylcholine (PC). Neonatal rat astrocytes were grown to confluency in Silastic-bottomed tissue culture wells in medium that was usually supplemented with 10 µM unlabeled arachidonate. Cell injury was produced by stretching (5–10 mm) the Silastic membrane with a 50-ms pulse of compressed air. Stretch-induced cell injury increased the incorporation of [3H]choline into PC in an incubation time- and stretch magnitude-dependent manner. PC biosynthesis was increased three- to fourfold between 1.5 and 4.5 h after injury and returned to control levels by 24 h postinjury. Stretch-induced cell injury also increased the activity of several enzymes involved in the hydrolysis [phospholipase A2 (EC 3.1.1.4) and C (PLC; EC 3.1.4.3)] and biosynthesis [phosphocholine cytidylyltransferase (PCT; EC 2.7.7.15)] of PC. Stretch-induced increases in PC biosynthesis and PCT activity correlated well (r = 0.983) and were significantly reduced by pretrating (1 h) the cells with an iron chelator (deferoxamine) or scavengers of reactive oxygen species such as superoxide dismutase and catalase. The stretch-dependent increase in PC biosynthesis was also reduced by antioxidants (vitamin E, vitamin E succinate, vitamin E phosphate, melatonin, and n-acetylcysteine). Arachidonate-enriched cells were more susceptible to stretch-induced injury because lactate dehydrogenase release and PC biosynthesis were significantly less in non-arachidonate-enriched cells. In summary, the data suggest that stretch-induced cell injury is (a) a result of an increase in the cellular level of hydroxyl radicals produced by an iron-catalyzed Haber-Weiss reaction, (b) due in part to the interaction of oxyradicals with the polyunsaturated fatty acids of cellular phospholipids such as PC, and (c) reversible as long as the cell's membrane repair functions (PC hydrolysis and biosynthesis) are sufficient to repair injured membranes. These results suggest that stretch-induced cell injury in vitro may mimic in part experimental traumatic brain injury in vivo because alterations in cellular PC biosynthesis and PLC activity are similar in both models. Therefore, this in vitro model of stretch-induced injury may supplement or be a reasonable alternative to some in vivo models of brain injury for determining the mechanisms by which traumatic cell injury results in cell dysfunction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 68 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Current literature suggests that a massive influx of Ca2+ into the cells of the CNS induces cell damage associated with traumatic brain injury (TBI). Using an in vitro model for stretch-induced cell injury developed by our laboratory, we have investigated the role of extracellular Ca2+ in astrocyte injury. The degree of injury was assessed by measurement of propidium iodide uptake and release of lactate dehydrogenase. Based on results of in vivo models of TBI developed by others, our initial hypothesis was that decreasing extracellular Ca2+ would result in a reduction in astrocyte injury. Quite unexpectedly, our results indicate that decreasing extracellular Ca2+ to levels observed after in vivo TBI increased astrocyte injury. Elevating the extracellular Ca2+ content to twofold above physiological levels (2 mM) produced a reduction in cell injury. The reduction in injury afforded by Ca2+ could not be mimicked with Ba2+, Mn2+, Zn2+, or Mg2+, suggesting that a Ca2+-specific mechanism is involved. Using 45Ca2+, we demonstrate that injury induces a rapid influx of extracellular Ca2+ into the astrocyte, achieving an elevation in total cell-associated Ca2+ content two- to threefold above basal levels. Pharmacological elevation of intracellular Ca2+ levels with the Ca2+ ionophore A23187 or thapsigargin before injury dramatically reduced astrocyte injury. Our data suggest that, contrary to popular assumptions, an elevation of total cell-associated Ca2+ reduces astrocyte injury produced by a traumatic insult.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Isolated hepatocytes were prepared by collagenase digestion of the livers of male guinea pigs and used either intact or after permeabilization of their plasma membranes with saponin, as previously described13. The intact hepatocytes were incubated in Eagle's medium, while the permeable cells were ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] High-specific-activity 32P-Ins(l,4,5)P3 (40Cimmol1) was prepared by phosphorylation of red cell ghosts with 32P-ATP (3,000 Ci mrnol"1), followed by hydrolysis and purification as described in Fig. 1 legend. Binding experiments were carried out on ice and in the presence of 1 or 2 mM ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...