GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Mathematics—Data processing. ; Oceanography. ; Physical geography. ; Atmospheric science. ; Mathematical analysis. ; Mathematics
    Description / Table of Contents: Preface -- Introduction -- Observations: atmospheric forcing and ocean response -- Atmospheric circulation -- Ocean forcing and the surface mixed layer -- Ocean response -- PART II: Models 205 -- Ocean models -- PART III: Free waves -- Overview -- Midlatitude waves -- Equatorial waves -- PART IV: Process solutions -- Overview -- Ekman drift and inertial oscillations -- Sverdrup flow and boundary currents -- Interior ocean -- Coastal ocean -- Equatorial ocean: switched-on forcing -- Equatorial Ocean: periodic forcing -- PART V: Applications -- Beams and Undercurrents -- Overturning circulations -- APPENDIX A: Movies.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XV, 521 p. 100 illus., 81 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9789811958649
    Series Statement: Atmosphere, Earth, Ocean & Space
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Konferenzschrift
    Type of Medium: Book
    Pages: 466 S , graph. Darst., Kt.
    Language: English
    Note: Enth. Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Type of Medium: Book
    Pages: S. 1093 - 1265 , graph. Darst
    Series Statement: Deep sea research 57.2010,13/14
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Science Letters 17 (2016): 39-42, doi:10.1002/asl.596.
    Description: Sea surface temperature in the Arabian Sea Mini Warm Pool has been suggested to be one of the factors that affects the Indian summer monsoon. In this paper, we analyze the annual ocean heat content (OHC) of this region during 1993–2010, using in situ data, satellite observations, and a model simulation. We find that OHC increases significantly in the region during this period relative to the north Indian Ocean, and propose that this increase could have caused the decrease in Indian Summer Monsoon Rainfall that occurred at the same time.
    Keywords: Tropical cyclone heat potential ; Arabian Sea Mini Warm Pool ; Satellite altimetry ; Ocean heat content ; All India monsoon rainfall
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 45 . pp. 1709-1734.
    Publication Date: 2021-05-18
    Description: We perform eddy-resolving and high-vertical-resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper ocean currents. Two main simulations are discussed: Solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform; and Solution 2, with realistic coastlines and with an annual cycle of wind forcing varying zonally. Somewhat surprisingly, Solution 1 produces the more realistic DEC: The large-vertical-scale currents (Equatorial Intermediate Currents or EICs) are found over a large zonal portion of the basin, and the small-vertical-scale equatorial currents (Equatorial Deep Jets or EDJs) form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. We demonstrate that both types of currents arise from the rectification of DEIV, consistent with previous theories. We also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In Solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, we find that the main reason for this weaker DEIV is the use of realistic coastlines in Solution 2. It remains to be determined, what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-09
    Description: A unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño–Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave–induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect. This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...