GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Cyanobacteria. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (249 pages)
    Edition: 1st ed.
    ISBN: 9781402030222
    Series Statement: Aquatic Ecology Series ; v.3
    DDC: 579.3/9165
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Algal crust ; CO2-fixation ; Matric water potential ; Photosynthesis ; Water activity ; Oscillatoria sp. ; Klebsormidium flaccidum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The water prerequisites of two drought tolerant Oscillatoria type cyanobacteria and one green alga were estimated by their ability to accomplish photosynthesis (carbon dioxide fixation) at conditions of subsaturating water supply. Fixation was zero in desiccated samples. Equilibration with solely water-saturated air did not enable any photosynthesis. However, granted properties of the physical environment of the samples could re-establish photosynthesis activity. These properties were elected by chosing membrane filters with different water retention characteristics as supporting substrata for the test samples in the de-and rehydration steps. Rehydration enabled the recovery of photosynthesis of desiccated samples only on the filters with good water retention, the filters with bad water retention were found ineffective. The Oscillatoria strains showed photosynthesis instantaneously and revealed nearly 100% viability. In contrast, rewetted cells of the green alga showed only 35% viability and the recovery of photosynthesis occurred only after 5 h. These differences reflect the natural environmental conditions: cyanobacteria are the first colonizers in the barren sand, whereas green algae can only start to colonize after progressing improvement of the water retention properties brought about by the pioneering cyanobacteria. The results will be discussed in the light of different specific mechanisms available to organisms which endeavour osmotic and matric water stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 7 (1990), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Photosynthetic organisms have a variety of accessory pigments, on which their classification has been based. Despite this variation, it is generally accepted that all chloroplasts are derived fromasingle cyanobacterial ancestor. How the pigment diversity has arisen is the key to revealing their ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5079
    Keywords: cell membrane ; fluorescent energy transduction probe ; photosynthesis ; Plectonema boryanum ; respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The fluorescent probe 9-amino-6-chloro-2-methoxy acridine was used to study the energy transduction in the thylakoid and cell membranes of the cyanobacterium Plectonema boryanum. Apart from light-driven electron transfer, the dark endogenous respiration also leads to energization resulting in an ACMA fluorescence response, that is sensitive to the electron flow inhibitor 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, to the energy transfer inhibitors dicyclohexylcarbodiimide and venturicidine and to the uncoupler 5-chloro-3-t-butyl-2′-chloro-4′-nitrosalicylanilide. In spheroplasts, in which the cell membranes have lost their capacity to maintain a proton gradient, the respiration-and light-induced ACMA fluorescence changes (quenching) are similar to those in chloroplasts. In intact cells a combination of reversible quenching and enhancement of ACMA fluorescence was found. This dualistic behaviour is supposedly caused by an opposite orientation of the thylakoid and cell membranes. ACMA quenching at the level of the thylakoids was obtained either by respiratory or photosynthetic electron transfer and gave similar responses to those obtained in the spheroplasts. The slower ACMA fluorescence enhancement, only observed in cells with intact cell membranes, also evoked by both respiration and light-induced energization is sensitive to the compounds mentioned above and in addition to KCN. Our results support the view [8] that dark oxidation of substrates by O2 proceeds via the thylakoid membrane and terminates at a CN- sensitive oxidase located in the cell membrane which requires the involvement of a mobile cytoplasmic redox mediator.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: thylakoid ; chloroplast ; ferredoxin-NADP+ oxidoreductase ; plastocyanin ; photosynthesis ; electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A method is described for the isolation and purification of ferredoxin-NADP+ oxidoreductase (FNR, E.C. 1.18.1.2) and plastocyanin from spinach thylakoids. FNR is recovered from pools which are loosely and tightly bound to the membrane, with minimal disruption of pigment-protein complexes; yields can thus be higher than from procedures which extract only the loosely bound enzyme. Washed thylakoid membranes were incubated with the dipolar ionic detergent CHAPS (3-(3-cholamidopropyl-dimethylammonio)-1-propane-sulfonate). This provided an extract containing FNR and PC as its principal protein components, which could be rapidly separated from one another by chromatography on an anion-exchange column. FNR was purified to homogeneity (as judged from sodium dodecyl sulfate gel electrophoresis and the ratio between protein and flavin absorption maxima), using chromatography on phosphocellulose followed by batchwise adsorption to, and elution from hydroxylapatite. Plastocyanin was further purified on a Sephadex G-75 molecular sieve column. A typical yield, obtained in 3–4 days from 1 kg of deveined spinach leaves, was 7 mg of pure FNR (a single protein of Mr=37,000) and 3.5 mg of plastocyanin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3592
    Keywords: algal culture ; bioreactor ; bioregenerative system ; energy economy ; light-emitting diode (LED) ; microsecond pulse modulation ; Chlorella pyrenoidosa ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Light-emitting diodes (LEDs) were used as the sole light source in continuous culture of the green alga Chlorella pyrenoidosa. The LEDs applied show a peak emission at 659 nm with a half-power bandwidth of 30 nm. Selection of this wavelength range, which is optimal for excitation of chlorophylls a and b in their “red” absorption bands makes all photons emitted potentially suitable for photosynthesis. No need for additional supply of blue light was found. A standardized panel with 2 LEDs cm-2 fully covered one side of the culture vessel. At standard voltage in continuous operation the light output of the diode panel appeared more than sufficient to reach maximal growth. Flash operation (5-μs pulse duration) enables potential use of higher operating voltages which may render up to three times more light output. Flat airlift fermentor-type continuous culture devices were used to estimate steady state growth rates of Chlorella pyrenoidosa as a function of the light flux (μmol photons · m-2 · s-1) and the flashing frequency of the light-emitting diodes (which determines the duration of the dark “off” time between the 5-μs “on” pulses). At the fixed voltage and turbidostat setting applied a 20-kHz frequency, which equals dark periods of 45 μs, still permitted the maximum growth rate to become nearly reached. Lower frequencies fell short of sustaining the maximal growth rate. However, the light flux decrease resulting from lowering of the flash frequency appeared to reduce the observed growth rates less than in the case of a similar flux decrease with light originating from LEDs in continuous operation. Flash application also showed reduction of the quantum requirement for oxygen evolution at defined frequencies. The frequency domain of interest was between 2 and 14 kHz. LEDs may open interesting new perspectives for studies on optimization of mixing in mass algal culture via the possibility of separation of interests in the role of modulation on light energy conversion and saturation of nutrient supply. Use of flashing LEDs in indoor algal culture yielded a major gain in energy economy in comparison to luminescent light sources. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...