GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-13
    Description: In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-23
    Description: Lake eutrophication is a pervasive problem globally, particularly serious in agricultural and densely pop- ulated areas. Whenever nutrients nitrogen and phosphorus do not limit phytoplankton growth directly, high growth rates will rapidly lead to biomass increases causing self-shading and light-limitation, and eventually CO2 depletion. The paradigm of phytoplankton limitation by nutrients and light is so perva- sively established, that the lack of nutrient limitation is ordinarily interpreted as sufficient evidence for the condition of light limitation, without considering the possibility of limitation by inorganic carbon. Here, we firstly evaluated how frequently CO2 undersaturation occurs in a set of eutrophic lakes in the Pampa plains. Our results confirm that conditions of CO2 undersaturation develop much more frequently (yearly 34%, summer 44%) in these agriculturally impacted lakes than in deep, temperate lakes in forested watersheds. Secondly, we used Generalized Additive Models to fit trends in CO2 concentration considering three drivers: total incident irradiance, chlorophyll a concentration, and lake depth; in eight multi-year datasets from eutrophic lakes from Europe, North and South America, Asia and New Zealand. CO2 deple- tion was more often observed at high irradiance levels, and shallow water. CO2 depletion also occurred at high chlorophyll concentration. Finally, we identified occurrences of light- and carbon-limitation at the whole-lake scale. The different responses of chlorophyll a and CO2 allowed us to develop criteria for detecting conditions of CO2 limitation. For the first time, we pro- vided whole-lake evidence of carbon limitation of phytoplankton biomass. CO2 increases and eutrophi- cation represent two major and converging environmental problems that have additive and contrasting effects, promoting phytoplankton, and also leading to carbon depletion. Their interactions deserve further exploration and imaginative approaches to deal with their effects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-19
    Description: Although many studies have focused on marine resources, few studies have considered the resources of inland fisheries. Inland fishery resources are typically either monitored on the basis of catch data alone or are not assessed quantitatively at all, despite their social, economic, and ecological importance. Because freshwater ecosystems have been severely degraded by human activities, evaluating the trends and current status of fishery resources and assessing their drivers are urgent tasks. We compiled long-term data on the annual catch, fishing effort, and fishing power of 23 Japanese lakes, using two sets of government statistics that dates back to the 1950s, which were previously neglected because of the large number of missing values. Using Bayesian state-space models, we examined the trajectories of the catch-per-unit-effort (cpue) of entire communities, considering changes in fishing effort and fishing power, and quantified both changes in the cpue over the 10-, 20-, and 30-year periods preceding 2008 and the temporal detrended stability of the cpue over the three periods. We also investigated the relationships among the cpue changes and stability, anthropogenic drivers, and lake morphometric characteristics. The cpue declined in 17, 19, and 15 of the 23 lakes over the past 10-, 20-, and 30-year periods, respectively. Our macroecological analyses demonstrate that the functional group richness of exotic piscivores was the most important predictor of changes in the cpue among the drivers we considered. The stability of the cpue was positively related to lake area; larger lakes have more stable cpue. The functional group richness of exotic piscivores also negatively affected the stability of the cpue. The effect of overfishing was considered to be small because both fishing effort and power declined in almost all of the lakes. Thus, our findings suggest that increasing exotic piscivore species may diminish the resources and their stability, particularly in Japanese lakes where native piscivores are rare. This might lead to a substantial decline in ecosystem services. Our study highlights the importance of assessing inland fishery resources in a comprehensive manner and the need for restoration strategies to mitigate the effects of exotic piscivores. # doi:10.1890/13-2182.1
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...