GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean acidification has the capacity to impact future coccolithophore growth, photosynthesis, and calcification, but experimental culture work with coccolithophores has produced seemingly contradictory results and has focused on open-ocean species. We investigated the influence of pCO2 (between 250 and 750 µatm) on the growth, photosynthetic, and calcification rates of the estuarine coccolithophore Pleurochrysis carterae using a CO2 manipulation system that allowed for natural carbonate chemistry variability, representing the highly variable carbonate chemistry of coastal and estuarine waters. We further considered the influence of pCO2 on dark calcification. Increased pCO2 conditions had no significant impact on P. carterae growth rate or photosynthetic rate. However, P. carterae calcification rates significantly increased at elevated mean pCO2 concentrations of 750 µatm. P. carterae calcification was somewhat, but not completely, light-dependent, with increased calcification rates at elevated mean pCO2 conditions in both light and dark incubations. This trend of increased calcification at higher pCO2 conditions fits into a recently developed substrate-inhibitor concept, which demonstrates a calcification optima concept that broadly fits the experimental results of many studies on the impact of increased pCO2 on coccolithophore calcification.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcification/Dissolution; Calcification rate of carbon; Calcification rate of carbon per cell; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate; Carbon, organic, particulate, per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell, diameter; Cell density; Chromista; Coccoliths; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Fluorescence; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Laboratory experiment; Laboratory strains; Light; Light mode; Nitrate; Nitrate and Nitrite; Nitrite; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; Phosphate; Photosynthesis rate, carbon, per cell; Photosynthesis rate of carbon; Phytoplankton; Pleurochrysis carterae; Primary production/Photosynthesis; Registration number of species; Replicate; Salinity; Sample code/label; Silicate; Single species; Species; Temperature, water; Time in days; Time in hours; Time of day; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 4198 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 30 (2016): 1124–1144, doi:10.1002/2016GB005414.
    Description: The Great Calcite Belt (GCB) is a region of elevated surface reflectance in the Southern Ocean (SO) covering ~16% of the global ocean and is thought to result from elevated, seasonal concentrations of coccolithophores. Here we describe field observations and experiments from two cruises that crossed the GCB in the Atlantic and Indian sectors of the SO. We confirm the presence of coccolithophores, their coccoliths, and associated optical scattering, located primarily in the region of the subtropical, Agulhas, and Subantarctic frontal regions. Coccolithophore-rich regions were typically associated with high-velocity frontal regions with higher seawater partial pressures of CO2 (pCO2) than the atmosphere, sufficient to reverse the direction of gas exchange to a CO2 source. There was no calcium carbonate (CaCO3) enhancement of particulate organic carbon (POC) export, but there were increased POC transfer efficiencies in high-flux particulate inorganic carbon regions. Contemporaneous observations are synthesized with results of trace-metal incubation experiments, 234Th-based flux estimates, and remotely sensed observations to generate a mandala that summarizes our understanding about the factors that regulate the location of the GCB.
    Description: National Science Foundation Grant Numbers: OCE-0961660, OCE-0728582, OCE-0961414, OCE-0960880; National Aeronautical and Space Administration Grant Numbers: NNX11AO72G, NNX11AL93G, NNX14AQ41G, NNX14AQ43A, NNX14AL92G, NNX14AM77G
    Keywords: Coccolithophores ; Trace metals ; Carbonate chemistry ; Southern Ocean ; Subantarctic Front ; Subtropical Front
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...