GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Online Resource
    Online Resource
    London :Taylor & Francis Group,
    Keywords: Geology, Stratigraphic -- Quaternary. ; Paleogeography -- Quaternary. ; Geomorphology. ; Electronic books.
    Description / Table of Contents: This third edition of Reconstructing Quaternary Environments has been completely revised and updated to provide a new account of the history and scale of environmental changes during the Quaternary. The evidence is extremely diverse ranging from landforms and sediments to fossil assemblages and geochemical data, and includes new data from terrestrial, marine and ice-core records. Dating methods are described and evaluated, while the principles and practices of Quaternary stratigraphy are also discussed. The volume concludes with a new chapter which considers some of the key questions about the nature, causes and consequences of global climatic and environmental change over a range of temporal scales. This synthesis builds on the methods and approaches described earlier in the book to show how a number of exciting ideas that have emerged over the last two decades are providing new insights into the operation of the global earth-ocean-atmosphere system, and are now central to many areas of contemporary Quaternary research. This comprehensive and dynamic textbook is richly illustrated throughout with full-colour figures and photographs. The book will be of interest to undergraduates, postgraduates and professionals in Earth Science, Environmental Science, Physical Geography, Geology, Botany, Zoology, Ecology, Archaeology and Anthropology.
    Type of Medium: Online Resource
    Pages: 1 online resource (569 pages)
    Edition: 3rd ed.
    ISBN: 9781317753711
    DDC: 551.7/9
    Language: English
    Note: Cover -- Half Title -- Dedication -- Title Page -- Copyright Page -- Table of Contents -- List of figures and tables -- Preface to the third edition -- Acknowledgements -- Cover image details -- 1 The Quaternary record -- 1.1 Introduction -- 1.2 Interpreting the Quaternary record -- 1.3 The status of the Quaternary in the geological timescale -- 1.4 The duration of the Quaternary -- 1.5 The development of Quaternary studies -- 1.5.1 Historical developments -- 1.5.2 Recent developments -- 1.6 The framework of the Quaternary -- 1.7 The causes of climatic change -- 1.8 The scope of this book -- Notes -- 2 Geomorphological evidence -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Field methods -- 2.2.1.1 Field mapping -- 2.2.1.2 Instrumental levelling -- 2.2.2 Remote sensing -- 2.2.2.1 Aerial photography -- 2.2.2.2 Satellite imagery -- 2.2.2.3 Radar -- 2.2.2.4 Sonar and seismic sensing -- 2.2.2.5 Digital elevation/terrain modelling -- 2.3 Glacial landforms -- 2.3.1 Extent of ice cover -- 2.3.2 Geomorphological evidence and the extent of ice sheets and glaciers during the last cold stage -- 2.3.2.1 Northern Europe -- 2.3.2.2 Britain and Ireland -- 2.3.2.3 North America -- 2.3.3 Direction of ice movement -- 2.3.3.1 Striations -- 2.3.3.2 Friction cracks -- 2.3.3.3 Ice-moulded (streamlined) bedrock -- 2.3.3.4 Streamlined glacial deposits -- 2.3.4 Reconstruction of former ice masses -- 2.3.4.1 Ice sheet modelling -- 2.3.4.2 Ice caps and glaciers -- 2.3.5 Palaeoclimatic inferences using former glacier elevations -- 2.3.5.1 Cirque floor altitude (CFA) and toe-to-headwall (THAR) methods -- 2.3.5.2 ELA/FLA method -- 2.4 Periglacial landforms -- 2.4.1 Palaeoclimatic inferences based on periglacial evidence -- 2.4.1.1 Rock glaciers -- 2.4.1.2 Pingos and palsas -- 2.4.1.3 Pronival ('protalus') ramparts -- 2.5 Sea-level change. , 2.5.1 Relative and 'absolute' sea-level changes -- 2.5.2 Eustatic changes in sea level -- 2.5.2.1 Pre-Quaternary eustatic changes -- 2.5.2.2 Quaternary eustatic changes -- 2.5.3 Tectonic influences -- 2.5.4 Glacio-and hydro-isostasy -- 2.5.5 Shoreline sequences in areas affected by glacio-isostasy -- 2.5.6 Palaeoenvironmental significance of sea-level changes -- 2.6 River terraces -- 2.6.1 Origins of river terraces -- 2.6.1.1 Eustatic changes in sea level -- 2.6.1.2 Climatic change -- 2.6.1.3 Glaciation -- 2.6.1.4 Tectonic changes -- 2.6.1.5 Human activity -- 2.6.2 River terraces and palaeoenvironmental reconstruction -- 2.6.3 The terraces of the River Thames -- 2.7 Quaternary landforms in low latitudes -- 2.7.1 Pluvial lakes -- 2.7.2 Dunefields -- 2.7.3 Fluvial landforms -- 2.7.4 Weathering crusts -- 2.8 Conclusions -- Notes -- 3 Lithological evidence -- 3.1 Introduction -- 3.2 Field and laboratory methods -- 3.2.1 Sediment sections -- 3.2.2 Coring -- 3.2.3 Laboratory methods -- 3.2.3.1 Particle size measurements -- 3.2.3.2 Particle shape -- 3.2.3.3 Surface textures of quartz particles -- 3.2.3.4 Organic carbon content -- 3.2.3.5 Metallic elements -- 3.2.3.6 Heavy minerals -- 3.2.3.7 Clay mineralogy -- 3.2.3.8 Mineral magnetic analysis -- 3.2.3.9 Stable isotope analysis -- 3.3. Glacial sediments -- 3.3.1 Introduction -- 3.3.2 The nature of glacial sediments -- 3.3.2.1 Unstratified and stratified sediments -- 3.3.2.2 Glacigenic facies -- 3.3.3 The classification of tills -- 3.3.3.1 Lodgement, melt-out and 'flow' tills -- 3.3.3.2 Deformation tills -- 3.3.3.3 Paraglacial deposits -- 3.3.4 The influence of the thermal regime of glacier ice -- 3.3.5 Analysis of glacigenic sequences -- 3.3.5.1 Particle size and shape analysis -- 3.3.5.2 Lithofacies interpretations -- 3.3.6 Ice-directional indicators -- 3.3.6.1 Erratics -- 3.3.6.2 Till fabrics. , 3.3.6.3 Properties of the till matrix -- 3.4 Periglacial sediments -- 3.4.1 Introduction -- 3.4.2 Structures associated with permafrost -- 3.4.3 Palaeoclimatic significance of periglacial structures -- 3.5 Palaeosols -- 3.5.1 Introduction -- 3.5.2 The nature of palaeosols -- 3.5.3 Analysis of palaeosols -- 3.5.4 Palaeosols and Quaternary environments -- 3.6 Wind-blown sediments -- 3.6.1 Introduction -- 3.6.2 Loess stratigraphy -- 3.6.3 Mid-latitude sand belts (coversands) -- 3.6.4 Low-latitude 'sand seas' -- 3.6.5 Wind-blown sediments and palaeoenvironmental reconstructions -- 3.7 Lake-level records from low-latitude regions -- 3.7.1 Introduction -- 3.7.2 Pluvial lake sediment sequences -- 3.7.3 Lake-level changes and Quaternary palaeoclimates -- 3.8 Cave sediments and carbonate deposits -- 3.8.1 Introduction -- 3.8.2 Detrital sediment in caves -- 3.8.3 Speleothem -- 3.8.4 Speleothem growth and environmental reconstruction -- 3.8.4.1 Speleothem growth and climatic change -- 3.8.4.2 Stable isotope ratios in cave speleothem -- 3.8.4.3 Trace elements in cave speleothem -- 3.8.4.4 Speleothem formation and sea-level variations -- 3.8.4.5 Speleothem formation and tectonic activity -- 3.8.4.6 Speleothem formation and rates of denudation -- 3.8.5 Other carbonate deposits -- 3.9 Lake, mire and bog sediments -- 3.9.1 Introduction -- 3.9.2 The nature of lake and bog sediments -- 3.9.3 Palaeoenvironmental evidence from lake sediments -- 3.9.3.1 Lake sediments and landscape changes -- 3.9.3.2 Lake-level variations and climatic changes -- 3.9.3.3 Lake sediments and palaeotemperatures -- 3.9.4 Palaeoenvironmental evidence from mire and bog sediments -- 3.9.4.1 Palaeoprecipitation records from ombrotrophic peats -- 3.9.4.2 Stable isotope records from ombrotrophic peats -- 3.9.4.3 Human impact recorded in ombrotrophic peat -- 3.10 The deep-sea sediment record. , 3.10.1 The nature and origin of ocean sediments -- 3.10.2 Oxygen isotope ratios and the ocean sediment record -- 3.10.2.1 General principles -- 3.10.2.2 Glacial ice storage and the marine oxygen isotope record -- 3.10.2.3 Ice volumes, sea level and the marine oxygen isotope record -- 3.10.2.4 Sea-surface temperatures and the marine oxygen isotope record -- 3.10.3 Limitations of oxygen isotope analysis -- 3.10.3.1 Stratigraphic resolution -- 3.10.3.2 Sediment mixing -- 3.10.3.3 Isotopic equilibrium between test carbonate and ocean water -- 3.10.3.4 Carbonate dissolution and diagenesis -- 3.10.4 Carbon isotopes in marine sediments -- 3.11 Ice-core stratigraphy -- 3.11.1 A brief history of deep-ice coring -- 3.11.2 Ice masses as palaeoenvironmental archives -- 3.11.3 Analysis of ice cores -- 3.11.3.1 Annual ice increments -- 3.11.3.2 Dust content -- 3.11.3.3 Chemical content -- 3.11.3.4 Stable isotope records -- 3.11.3.5 Other trace substances -- 3.11.4 Palaeoenvironmental significance of ice cores -- 3.12 Conclusions -- Notes -- 4 Biological evidence -- 4.1 Introduction -- 4.1.1 The nature of the Quaternary fossil record -- 4.1.2 The taphonomy of Quaternary fossil assemblages -- 4.1.3 The interpretation of Quaternary fossil assemblages -- 4.2 Pollen analysis -- 4.2.1 Introduction -- 4.2.2 The nature of pollen and spores -- 4.2.3 Field and laboratory work -- 4.2.4 Pollen diagrams -- 4.2.5 The interpretation of pollen diagrams -- 4.2.6 Applications of pollen stratigraphy -- 4.2.6.1 Local vegetation reconstructions -- 4.2.6.2 Regional vegetation reconstructions -- 4.2.6.3 Space-time reconstructions -- 4.2.6.4 Human impact on vegetation cover -- 4.2.6.5 Pollen data and climatic reconstructions -- 4.3 Diatom analysis -- 4.3.1 Introduction -- 4.3.2 The nature and ecology of diatoms -- 4.3.3 Field and laboratory methods. , 4.3.4 The interpretation of Quaternary diatom records -- 4.3.5 Applications of diatom analysis -- 4.3.5.1 Diatoms as salinity indicators -- 4.3.5.2 Diatoms and pH -- 4.3.5.3 Diatoms and trophic status -- 4.3.5.4 Diatoms and the archaeological record -- 4.3.5.5 Other environmental applications -- 4.4 Plant macrofossil analysis -- 4.4.1 Introduction -- 4.4.2 The nature of plant macrofossils -- 4.4.3 Field and laboratory work -- 4.4.4 Data presentation -- 4.4.5 The interpretation of plant macrofossil data -- 4.4.6 Palaeoenvironmental applications of plant macrofossil studies -- 4.4.6.1 Palaeoclimatic reconstructions -- 4.4.6.2 Forest history -- 4.4.6.3 Charcoal and fire history -- 4.4.6.4 Archaeological records -- 4.5 Fossil insect remains -- 4.5.1 Introduction -- 4.5.2 Coleoptera -- 4.5.3 Laboratory methods -- 4.5.4 Coleopteran analysis and Quaternary environments -- 4.5.4.1 Habitat preferences -- 4.5.4.2 Palaeoclimatic inferences based on coleopteran assemblages -- 4.5.4.3 Insect fossils and archaeology -- 4.5.5 Chironomidae -- 4.6 Non-marine Mollusca -- 4.6.1 Introduction -- 4.6.2 The nature and distribution of molluscs -- 4.6.3 Field and laboratory work -- 4.6.4 Taphonomy of non-marine molluscan assemblages -- 4.6.5 Interpretation of non-marine molluscan assemblages: habitat groups and indices of species diversity -- 4.6.6 Applications of Quaternary non-marine molluscan records -- 4.6.6.1 Biostratigraphic correlation -- 4.6.6.2 Palaeoclimatic reconstructions -- 4.6.6.3 Archaeological relevance -- 4.7 Marine Mollusca -- 4.7.1 Introduction -- 4.7.2 Analysis of marine molluscan assemblages -- 4.7.3 Marine Mollusca and palaeoclimatic inferences -- 4.7.4 Other applications of fossil marine molluscan records -- 4.8 Ostracod analysis -- 4.8.1 The nature and distribution of ostracods -- 4.8.2 Collection and identification. , 4.8.3 Ostracoda in Quaternary studies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Quaternary. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (469 pages)
    Edition: 2nd ed.
    ISBN: 9781317894506
    DDC: 560/.1/78
    Language: English
    Note: Cover -- Half Title -- Dedication -- Title Page -- Copyright Page -- Table of Contents -- Preface to the first edition -- Preface to the second edition -- Acknowledgements -- Chapter 1 The Quaternary record -- 1.1 Introduction -- 1.2 The character of the Quaternary -- 1.3 The duration of the Quaternary -- 1.4 The development of Quaternry studies -- 1.4.1 Historical developments -- 1.4.2 Recent developments -- 1.5 The framework of the Quaternary -- 1.6 The causes of climatic change -- 1.7 The scope of this book -- Notes -- Chapter 2 Geomorphological evidence -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Field methods -- 2.2.2 Remote sensing -- 2.3 Glacial landforms -- 2.3.1 Extent of ice cover -- 2.3.2 Geomorphological evidence and the extent of ice sheets and glaciers during the last cold stage -- 2.3.3 Direction of ice movement -- 2.3.4 Reconstruction of former ice masses -- 2.3.5 Palaeotemperature estimates from glacial geomorphological evidence -- 2.4 Periglacial landforms -- 2.4.1 Palaeoclimatic inferences based on periglacial landforms -- 2.5 Sea-level change -- 2.5.1 Relative and 'absolute' sea-level changes -- 2.5.2 Eustatic changes in sea level -- 2.5.3 Tectonic influences -- 2.5.4 Shoreline sequences in areas affected by glacio-isostasy -- 2.5.5 Palaeoenvironmental significance of sea-level changes -- 2.6 River terraces -- 2.6.1 Origins of river terraces -- 2.6.2 River terraces and palaeoenvironments -- 2.6.3 The terraces of the River Thames -- 2.7 Quaternary landforms in low latitudes -- 2.7.1 Pluvial lakes -- 2.7.2 Dunefields -- 2.7.3 Fluvial landforms -- 2.7.4 Weathering crusts -- 2.8 Conclusions -- Notes -- Chapter 3 Lithological evidence -- 3.1 Introduction -- 3.2 Field and laboratory methods -- 3.2.1 Sediment sections -- 3.2.2 Coring -- 3.2.3 Laboratory methods -- 3.3 Glacial sediments -- 3.3.1 Introduction. , 3.3.2 The nature of glacial sediments -- 3.3.3 The classification of tills -- 3.3.4 The influence of the thermal régime of glacier ice -- 3.3.5 Analysis of glacigenic sequences -- 3.3.6 Ice-directional indicators -- 3.4 Periglacial sediments -- 3.4.1 Introduction -- 3.4.2 Structures associated with permafrost -- 3.4.3 Palaeoclimatic significance of periglacial structures -- 3.5 Palaeosols -- 3.5.1 Introduction -- 3.5.2 The nature of palaeosols -- 3.5.3 Analysis of palaeosols -- 3.5.4 Palaeosols and Quaternary environments -- 3.6 Lake level records from low latitude regions -- 3.6.1 Introduction -- 3.6.2 'Pluvial' lake sediment sequences -- 3.6.3 Lake level changes and Quaternary palaeoclimates -- 3.7 Wind-blown sediments -- 3.7.1 Introduction -- 3.7.2 Loess stratigraphy -- 3.7.3 Mid-latitude sand belts (coversands) -- 3.7.4 Low latitude 'sand seas' -- 3.7.5 Wind-blown sediments and palaeoenvironmental reconstructions -- 3.8 Cave sediments and carbonate deposits -- 3.8.1 Introduction -- 3.8.2 Detrital sediment in caves -- 3.8.3 Speleothem -- 3.8.4 Speleothem growth and environmental reconstruction -- 3.8.5 Oxygen isotope ratios in cave speleothem -- 3.8.6 Other carbonate deposits -- 3.9 Lake, mire and bog sediments -- 3.9.1 Introduction -- 3.9.2 The nature of lake and bog sediments -- 3.9.3 Palaeoenvironmental evidence from lake sediments -- 3.9.4 Palaeoenvironmental evidence from mire and bog sediments -- 3.10 Stable oxygen isotope stratigraphy of deep-sea sediments -- 3.10.1 Introduction -- 3.10.2 Oxygen isotope ratios and the ocean sediment record -- 3.10.3 Environmental influences on 18O/16O ratios in marine sediments -- 3.10.4 Limitations in oxygen isotope analysis -- 3.10.5 Carbon isotopes in marine sediments -- 3.11 Ice-core stratigraphy -- 3.11.1 Introduction -- 3.11.2 Ice masses as palaeoenvironmental archives -- 3.11.3 Analysis of ice cores. , 3.11.4 Palaeoenvironmental significance of ice-core data -- 3.12 Conclusions -- Notes -- Chapter 4 Biological evidence -- 4.1 Introduction -- 4.1.1 The nature of the Quaternary fossil record -- 4.1.2 The taphonomy of Quaternary fossil assemblages -- 4.1.3 The interpretation of Quaternary fossil assemblages -- 4.2 Pollen analysis -- 4.2.1 Introduction -- 4.2.2 The nature of pollen and spores -- 4.2.3 Field and laboratory work -- 4.2.4 Pollen diagrams -- 4.2.5 The interpretation of pollen diagrams -- 4.2.6 Applications of pollen stratigraphy -- 4.3 Diatom analysis -- 4.3.1 Introduction -- 4.3.2 The nature and ecology of diatoms -- 4.3.3 Field and laboratory methods -- 4.3.4 The interpretation of Quaternary diatom records -- 4.3.5 Applications of diatom analysis -- 4.4 Plant macrofossil analysis -- 4.4.1 Introduction -- 4.4.2 The nature of plant macrofossils -- 4.4.3 Field and laboratory work -- 4.4.4 Data presentation -- 4.4.5 The interpretation of plant macrofossil data -- 4.4.6 Applications of plant macrofossil studies -- 4.5 Fossil insect remains -- 4.5.1 Introduction -- 4.5.2 Coleoptera -- 4.5.3 Laboratory methods -- 4.5.4 Coleopteran analysis and Quaternary environments -- 4.6 Chironomidae -- 4.7 Non-marine Mollusca -- 4.7.1 Introduction -- 4.7.2 The nature and distribution of molluscs -- 4.7.3 Field and laboratory work -- 4.7.4 Taphonomy of non-marine molluscan assemblages -- 4.7.5 Habitat preferences of non-marine Mollusca -- 4.7.6 Non-marine Mollusca and palaeoclimate reconstructions -- 4.8 Marine Mollusca -- 4.8.1 Introduction -- 4.8.2 Analysis of marine molluscan assemblages -- 4.8.3 Marine Mollusca and palaeoclimatic inferences -- 4.9 Ostracod analysis -- 4.9.1 The nature and distribution of ostracods -- 4.9.2 Collection and identification -- 4.9.3 Ostracoda in Quaternary studies -- 4.10 Foraminiferal analysis. , 4.10.1 The nature and distribution of Foraminifera -- 4.10.2 Collection and identification -- 4.10.3 Foraminifera in Quaternary inshore and shelf sediments -- 4.11 Micropalaeontology of deep-sea sediments -- 4.11.1 Introduction -- 4.11.2 Radiolaria -- 4.11.3 Coccolithophores -- 4.11.4 Marine microfossils in ocean sediments -- 4.11.5 Laboratory separation of marine microfossils -- 4.11.6 Marine palaeoclimatology -- 4.11. 7 Marine palaeoproduetivity and palaeocireulation -- 4.12 Vertebrate remains -- 4.12.1 Introduction -- 4.12.2 The structure of teeth and bones -- 4.12.3 Fossilisation of bone material -- 4.12.4 Field and laboratory techniques -- 4.12.5 The taphonomy of fossil vertebrate assemblages -- 4.12.6 Vertebrate fossils and Quaternary environments -- 4.13 Other fossil groups -- 4.13.1 Chrysophytes -- 4.13.2 Cladocera -- 4.13.3 Coral polyps -- 4.13.4 Fungal remains -- 4.13.5 'Rhizopods' or testate amoebae -- 4.14 Multi-proxy palaeoecologieal studies -- 4.15 Quaternary palaeobiology and ecological theory -- 4.15.1 Biomass and global climate change -- 4.15.2 Migration of biota and community structures -- 4.15.3 Extinctions -- 4.15.4 Conservation, biodiversity and habitat destruction -- 4.16 Conclusions -- Notes -- Chapter 5 Dating methods -- 5.1 Introduction -- 5.2 Precision and accuracy in Quaternary dating -- 5.3 Radiometric dating techniques -- 5.3.1 The nucleus and radioactivity -- 5.3.2 Radiocarbon dating -- 5.3.3 Potassium-argon and argon-argon dating -- 5.3.4 Uranium-series dating -- 5.3.5 Fission track dating -- 5.3.6 Luminescenec dating -- 5.3.7 Electron spin resonance (ESR) dating -- 5.3.8 Other radiometric methods -- 5.4 Incremental dating methods -- 5.4.1 Dendrochronology -- 5.4.2 Varve chronology -- 5.4.3 Lichenometry -- 5.4.4 Annual layers in glacier ice -- 5.5 Age-equivalent stratigraphic markers -- 5.5.1 Palaeomagnetism. , 5.5.2 Tephrochronology -- 5.5.3 Oxygen isotope chronology -- 5.6 Relative chronology based on processes of chemical alteration -- 5.6.1 Amino-acid geochronology -- 5.6.2 Fluorine, uranium and nitrogen content of fossil bones -- 5.6.3 Obsidian hydration -- 5.6.4 Weathering characteristics of rock surfaces -- 5.6.5 Pedogenesis -- 5.7 Conclusions -- Notes -- Chapter 6 Approaches to Quaternary stratigraphy and correlation -- 6.1 Introduction -- 6.2 Stratigraphic subdivision -- 6.2.1 Principles of Quaternary stratigraphy -- 6.2.2 Stratotypes -- 6.2.3 Elements of Quaternary stratigraphy -- 6.3 Time-stratigraphic correlation -- 6.3.1 Principles of Quaternary correlation -- 6.3.2 Elements of time-stratigraphic correlation -- 6.3.3 Correlation between continental, marine and ice-core records -- 6.4 Conclusions -- Note -- Chapter 7 The last interglacial-glacial cycle: 130-10 ka BP -- 7.1 Introduction -- 7.2 The stratigraphic framework for the last 130 ka -- 7.3 The last interglacial (OI substage 5e) -- 7.3.1 Defining the last interglacial -- 7.3.2 Proxy records from the last interglacial -- 7.3.3 Dating the last interglacial -- 7.4 The transition to the last cold stage (OI substages 5d to 5a) -- 7.4.1 The OI substage 5e/5d transition -- 7.4.2 OI substages 5c to 5a -- 7.4.3 The OI stage 5/4 transition -- 7.4.4 Short-lived 'events' during the last interglacial-glacial transition -- 7.5 The last cold stage (OI stages 4 to 2) -- 7.5.1 Events during the last cold stage: the marine record -- 7.5.2 Events during the last cold stage: the terrestrial record -- 7.5.3 Events during the last cold stage: the ice-sheet record -- 7.5.4 Events during the last cold stage: the ice-core record -- 7.5.5 Correlation between ice-core, marine, terrestrial and glacial records from the last cold stage -- 7.6 The last glacial-interglacial transition (OI stage 2/1). , 7.6.1 Stratigraphic nomenclature.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Geology, Stratigraphic -- Pleistocene. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (212 pages)
    Edition: 1st ed.
    ISBN: 9781483155340
    DDC: 551.79209411
    Language: English
    Note: Front Cover -- Studies in the Scottish Lateglacial Environment -- Copyright Page -- Table of Contents -- Contributors -- Acknowledgements -- Introduction -- Chapter 1. The Late Devensian Glaciation of North-East Scotland -- ABSTRACT -- INTRODUCTION -- PHYSICAL SETTING -- FEATURES OF GLACIAL EROSION -- FEATURES OF GLACIAL DEPOSITION -- FEATURES OF GLACIAL MELTWATER ACTIVITY -- FEATURES OF GLACIOLACUSTRINE DEPOSITION -- FEATURES OF PERIGLACIAL ACTIVITY -- FEATURES OF THE LATEGLACIAL -- CHRONOLOGY AND CONCLUSIONS -- ACKNOWLEDGEMENTS -- Chapter 2. Lateglacial Raised Shorelines andDeglaciation in the Earn-Tay Area -- ABSTRACT -- INTRODUCTION -- METHODS OF INVESTIGATION -- LATEGLACIAL RAISED SHORELINES AND BEACHES -- FLUVIOGLACIAL FEATURES -- RELATION OF THE RAISED SHORELINES TO DEGLACIATION -- GENERAL CHARACTERISTICS OF THE RAISED BEACHES -- ACKNOWLEDGEMENTS -- Chapter 3. The "Oban-Ford Moraine":A Reappraisal -- ABSTRACT -- INTRODUCTION -- METHODS -- LOCH AWE LOCH CRINAN -- LOCH AVICH - LOCH CRAIGNISH -- LOCH TRALAIG - LOCH MELFORT -- LOCH SCAMMADALE - LOCH FEOCHAN -- HEAD OF LOCH FEOCHAN -- OBAN CEMETERY -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- Chapter 4. The Loch Lomond Read v a nee in theNorthern Mainland of Scotland -- ABSTRACT -- INTRODUCTION -- LITERATURE -- END MORAINES -- HUMMOCKY MORAINES -- FLUTED MORAINES -- BOULDER LIMITS -- DRIFT LIMITS -- PERIGLACIAL FEATURES -- RECONSTRUCTION OF THE GLACIERS -- DATE OF THE READVANCE -- DISTRIBUTION OF THE GLACIERS -- ACKNOWLEDGEMENTS -- Chapter 5. Stratigraphical and Faunal Evidence forLateglacial and Early FlandrianEnvironments in South-West Scotland -- ABSTRACT -- GENERAL INTRODUCTION -- PART I STRATIGRAPHICAL EVIDENCE (WWB -- INTRODUCTION -- SOLWAY FIRTH -- AYRSHIRE COAST -- FIRTH OF CLYDE -- PART II FAUNAL EVIDENCE (GRC -- INTRODUCTION -- FAUNAL SITES. , SUMMARY OF LATEGLACIAL AND EARLY FLANDRIANENVIRONMENTS IN SOUTH-WEST SCOTLAND -- ACKNOWLEDGEMENTS -- Chapter 6. Evolution and Chronology ofLateglacial Marine Environments atLochgilphead, Scotland -- ABSTRACT -- INTRODUCTION -- GENERAL CONSIDERATIONS -- LITHOSTRATIGRAPHY -- FAUNA -- CONDITIONS OF DEPOSITION -- INTERPRETATION OF THE SUCCESSION -- DATING OF THE DEPOSITS -- DISCUSSION AND CONCLUSIONS -- ACKNOWLEDGEMENTS -- APPENDIX 1. LOCHGILPHEAD AUGER HOLE -- APPENDIX 2 . LOCHGILPHEAD AUGER HOLE -- APPENDIX 3 . LOCHGILPHEAD PIT A -- APPENDIX 4. LOCHGILPHEAD PIT B -- APPENDIX 5. LOCHGILPHEAD PIT B -- APPENDIX 6. LOCHGILPHEAD PIT B -- Chapter 7. The Reconstruction of the LateglacialEnvironment in the Southern and EasternGrampian Highlands -- ABSTRACT -- INTRODUCTION -- LITHOSTRATIGRAPHY -- BIOSTRATIGRAPHY -- ANALYSIS OF DETERIORATED POLLEN -- RADIOCARBON DATING -- THE ENVIRONMENT DURING THE LATEGLACIAL INTERSTADIAL -- THE ENVIRONMENT DURING THE LOCH LOMOND STADIAL -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- Chapter 8. Lake Sediments and the LateglacialEnvironment in Northern Scotland -- ABSTRACT -- INTRODUCTION -- METHODS -- LITHOSTRATIGRAPHY -- BIOSTRATIGRAPHY -- GEOCHEMISTRY -- SYNTHESIS -- ACKNOWLEDGEMENTS -- NOTE ADDED IN PROOF -- Chapter 9. Radiocarbon Dating of the Lateglacialand Early Flandrian VegetationalSuccession in the Scottish Highlands andthe Isle of Skye -- ABSTRACT -- INTRODUCTION -- MATERIAL -- SCOTTISH HIGHLANDS -- ISLE OF SKYE -- DISCUSSION -- ACKNOWLEDGEMENTS -- Chapter 10. The Scottish Lateglacial Environment:A Synthesis -- ABSTRACT -- INTRODUCTION -- DEGLACIATION AND READVANCES -- PERIGLACIATION -- SEA-LEVEL CHANGES -- ENVIRONMENTAL IMPLICATIONS FROM BIOSTRATIGRAPHY -- CLIMATE -- TERMINOLOGY AND CHRONOLOGY -- FUTURE RESEARCH -- ACKNOWLEDGEMENTS -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Type of Medium: Book
    Pages: S. 157 - 321 , Ill., graph. Darst., Kt.
    Series Statement: Global and planetary change 79.2011,3/4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  European Pollen Database (EPD)
    Publication Date: 2023-02-07
    Keywords: Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Lithology/composition/facies; Llyn Gwernan, United Kingdom; LLYN-JL; RPS; Russian peat sampler
    Type: Dataset
    Format: text/tab-separated-values, 21 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  European Pollen Database (EPD)
    Publication Date: 2023-02-23
    Keywords: Age, dated; Age, dated, error to older; Age, dated, error to younger; Age, dated material; Age, radiocarbon; DEPTH, sediment/rock; Llyn Gwernan, United Kingdom; LLYN-JL; RPS; Russian peat sampler; Sample, optional label/labor no; Thickness; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 41 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  European Pollen Database (EPD)
    Publication Date: 2023-11-01
    Keywords: Alnus; Artemisia; Asteroideae; Betula; Caryophyllaceae; Chenopodiaceae; Cichorioideae; Corylus; Crataegus; Cruciferae; Cyperaceae; DEPTH, sediment/rock; Dryopteris; Empetrum; Equisetum; Ericales; Filicopsida; Filipendula; Galium; Gramineae; Huperzia selago; Indeterminable: concealed; Indeterminable: unknown; Isoetes; Juniperus; Leguminosae; Llyn Gwernan, United Kingdom; LLYN-JL; Lycopodium; Myriophyllum; Nuphar; Pinus; Plantago; Plantago lanceolata; Polypodium; Potamogeton; Potentilla; Pre-Quaternary spores; Quercus; Ranunculus; Rosaceae; RPS; Rumex; Russian peat sampler; Salix; Saxifragaceae; Selaginella; Sparganium; Sphagnum; Succisa; Thalictrum; Ulmus; Umbelliferae; Valeriana
    Type: Dataset
    Format: text/tab-separated-values, 3234 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3EGS-AGU-EUG Joint Assembly, Nice (F)April 2003., 6
    Publication Date: 2019-07-17
    Description: The HadCM3 AOGCM has been coupled with a dynamic 3D model of the Green-landice sheet that includes a visco-elastic solid Earth model. The AOGCM exchangesinformation with the sheet model once a year. Precipitation and temperature anomalies are passed to the ice sheet model, which calculates ablation (using a degree-day scheme), ice dynamics and basal rebound. The ice sheet model passes back to the GCM an updated orography and freshwater fluxes. Iceberg calving fluxes are applied evenly to the sea region adjacent to Greenland whilst runoff enters the ocean at coastal points. When a GCM grid cell changes from ice-covered to ice-free or vice-versa, the surface characteristics are modified appropriately. A multiple-century experiment is being undertaken, starting from the present-day ice sheet, with four times the pre-industrial atmospheric CO2 concentration, to determine the rate of ice ablation, the effect on oceanic circulation and local climate, and the feedback of orographic and climate change on the ice sheet mass balance. Over the first 200 years, the contribution to global average sea level rise as a result of loss of mass from the ice sheet is about 5 mm/yr.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Avoiding dangerous climate change, Scientific symposium on stabilisation of greenhouse gases, Exeter (UK)February 2005., 1
    Publication Date: 2019-07-17
    Description: Sea level rise is an important aspect of future climate change because, without upgraded coastal defences, it is likely to lead to significant impacts. Here we report on several aspects of sea level rise that have implications for the avoidance of dangerous climate change and stabilisation of climate. If the Greenland ice sheet were to melt it would raise global sea levels by around 7m. We discuss the likelihood of such an event occurring in the coming centuries and the possibility that it might be irreversible. We also discuss the time scales controlling sea level rise and estimate how long after atmospheric greenhouse gas concentrations or global temperature have been stabilised that coastal impacts will stop increasing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Climate, 18(17)3427, 3409
    Publication Date: 2019-07-17
    Description: Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems we have coupled a high resolution (20km) dynamic ice sheet model to the Hadley Centre GCM, HadCM3. A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model which, in turn, can alter the future climate through changes in orography, surface albedo and fresh water input to the model ocean. At the start of our main experiment the atmospheric carbon dioxide concentration was increased to four times the pre-industrial level and held constant for 3000 years. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea-level, causing a peak rate of sea level rise of 5mm per year early in the simulation. We have examined the effect of ice sheet depletion on global and regional climate and found that apart from the sea level rise the long term effect on global climate is small. However, there are some significant regional climate changes which appear to have reduced the rate at which the ice sheet ablates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...