GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-04-20
    Beschreibung: At MOSAiC, we collected snow depths by Magnaprobe - an automated snow depth probe, throughout the seasons, most often alongside electromagnetic measurements for deriving total thickness. Most of the data were collected routinely along established transect lines and loops to create timeseries. Some data were collected opportunistically e.g., during 'events'. In addition, several repeated ridge transects were established. During the melt season (June – September 2020), the Magnaprobe was used to measure snow depth, surface scatter layer depth and melt pond depth. This repository includes data obtained by Magnaprobe, sea ice thickness derived by subtracting snow depth from co-located total thickness measurements, a descriptive document including maps (Magnaprobe Repository Description), and a table of with other transect-mode measurements at MOSAiC (Action Log Table): remote sensing instruments, snow structure measurements etc.
    Schlagwort(e): Arctic; Arctic Ocean; Arctic Research Icebreaker Consortium: A strategy for meeting the needs for marine-based research in the Arctic; ARICE; Binary Object; Binary Object (File Size); electromagnetic induction; File content; GEM-2; ice; MAGNA; magnaprobe; Magnaprobe; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; ocean; Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS122/1; PS122/1_10-59; PS122/1_4-1; PS122/1_5-27; PS122/1_6-50; PS122/1_7-62; PS122/1_8-58; PS122/1_9-54; PS122/2; PS122/2_16-83; PS122/2_16-84; PS122/2_17-113; PS122/2_18-80; PS122/2_19-101; PS122/2_19-103; PS122/2_19-107; PS122/2_19-110; PS122/2_19-113; PS122/2_19-139; PS122/2_20-124; PS122/2_20-43; PS122/2_20-95; PS122/2_20-98; PS122/2_21-140; PS122/2_21-141; PS122/2_21-142; PS122/2_22-92; PS122/2_22-94; PS122/2_23-62; PS122/2_23-90; PS122/2_24-69; PS122/2_25-119; PS122/2_25-122; PS122/2_25-124; PS122/3; PS122/3_29-67; PS122/3_29-70; PS122/3_29-73; PS122/3_30-88; PS122/3_30-89; PS122/3_32-95; PS122/3_33-91; PS122/3_33-92; PS122/3_34-15; PS122/3_34-88; PS122/3_34-89; PS122/3_35-112; PS122/3_35-114; PS122/3_35-20; PS122/3_35-21; PS122/3_36-145; PS122/3_36-153; PS122/3_37-134; PS122/3_37-82; PS122/3_37-83; PS122/3_37-84; PS122/3_38-80; PS122/3_38-81; PS122/3_38-82; PS122/3_39-131; PS122/3_39-132; PS122/3_39-133; PS122/4; PS122/4_44-265; PS122/4_44-266; PS122/4_44-267; PS122/4_44-268; PS122/4_44-269; PS122/4_45-198; PS122/4_45-199; PS122/4_45-200; PS122/4_45-201; PS122/4_45-202; PS122/4_45-203; PS122/4_46-234; PS122/4_46-235; PS122/4_46-236; PS122/4_46-237; PS122/4_46-238; PS122/4_46-239; PS122/4_47-220; PS122/4_47-221; PS122/4_47-222; PS122/4_47-223; PS122/4_47-224; PS122/4_47-225; PS122/4_47-226; PS122/4_47-242; PS122/4_48-245; PS122/4_48-246; PS122/4_48-247; PS122/4_48-248; PS122/4_48-249; PS122/4_48-250; PS122/4_48-275; PS122/4_49-115; PS122/4_49-116; PS122/4_49-120; PS122/5; PS122/5_59-256; PS122/5_59-411; PS122/5_59-412; PS122/5_59-413; PS122/5_60-163; PS122/5_60-164; PS122/5_60-58; PS122/5_61-110; PS122/5_61-111; PS122/5_61-216; PS122/5_61-217; PS122/5_62-17; PS122/5_62-239; PS122/5_62-241; PS122/5_62-242; PS122/5_62-243; PS122/5_62-244; PS122/5_63-145; PS122/5_63-37; PS122/5_63-80; Sea ice mass balance; Sea ice thickness; snow depth; SPP1158; transect
    Materialart: Dataset
    Format: text/tab-separated-values, 12 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change.High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (QE) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over QE, particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower QE and higher sensible heat flux (QH). There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper.Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase QE and reduce QH. Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce QE by roughly 50% with little change in QH, while the ground heat flux is strongly enhanced.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: In arctic tundra, shrubs can significantly modify the distribution and physical characteristics of snow, influencing the exchanges of energy and moisture between terrestrial ecosystems and the atmosphere from winter into the growing season. These interactions were studied using a spatially distributed, physically based modelling system that represents key components of the land–atmosphere system. Simulations were run for 4 years, over a 4-km2 tundra domain located in arctic Alaska. A shrub increase was simulated by replacing the observed moist-tundra and wet-tundra vegetation classes with shrub-tundra; a procedure that modified 77% of the simulation domain. The remaining 23% of the domain, primarily ridge tops, was left as the observed dry-tundra vegetation class. The shrub enhancement increased the averaged snow depth of the domain by 14%, decreased blowing-snow sublimation fluxes by 68%, and increased the snowcover's thermal resistance by 15%. The shrub increase also caused significant changes in snow-depth distribution patterns; the shrub-enhanced areas had deeper snow, and the non-modified areas had less snow. This snow-distribution change influenced the timing and magnitude of all surface energy-balance components during snowmelt. The modified snow distributions also affected meltwater fluxes, leading to greater meltwater production late in the melt season. For a region with an annual snow-free period of approximately 90 days, the snow-covered period decreased by 11 days on the ridges and increased by 5 days in the shrub-enhanced areas. Arctic shrub increases impact the spatial coupling of climatically important snow, energy and moisture interactions by producing changes in both shrub-enhanced and non-modified areas. In addition, the temporal coupling of the climate system was modified when additional moisture held within the snowcover, because of less winter sublimation, was released as snowmelt in the spring.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: In the near coastal regions of Dronning Maud Land, Antarctica, below-surface ice-melt in blue-ice areas has been observed. The low scattering coefficients of the large-grained blue-ice allow penetration of solar radiation, thus providing an energy source below the ice surface. The sub-surface meltwater is significant enough to show up on remote-sensing imagery in the form of ice-covered lakes. Adjacent snow-accumulation areas have much higher scattering coefficients and consequently limit solar radiation penetration in these regions. These snow and ice surfaces are generally below freezing, and little surface melting occurs. To assess the response of these melt features to changes in atmospheric forcings such as cloudiness, air temperature, and snow accumulation, a physically-based model of the coupled atmosphere, radiation, snow, and blue-ice system has been developed. The model consists of a heat transfer equation with a spectrally-dependent solar-radiation source term. The penetration of radiation into the snow and blue-ice depends on the surface albedo, and the snow and blue-ice grain size and density. Model simulations show that ice melt occurring in this area is sensitive to potential variations in atmospheric forcing. Under certain conditions more traditional surface melting occurs and, under other conditions, the existing melt processes can be shut down completely. In light of the sensitivity of this system to variations in atmospheric forcing, and the ability to view melt-related features using remote sensing, a tool exists to efficiently monitor variations in Antarctic coastal climate.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-01-08
    Beschreibung: The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 ± 10 Gt/yr2 since the end of the 1990's, with around 60 % of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB) components using: (1) complex physically-based climate models which are computationally expensive; (2) intermediate complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical principles and are computationally highly efficient. Additionally, many of these models compute the SMB components based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a common ice sheet mask at 1 km horizontal resolution for the common period 1980–2012. The SMB outputs from 13 models are then compared over the GrIS to (1) SMB estimates using a combination of gravimetric remote sensing data from GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all 13 models has been positive between 1980 and 2012 with an average of 340 ± Gt/yr, but has decreased at an average rate of −7.3 Gt/yr2 (with a significance of 96 %), mainly driven by an increase of 8.0 Gt/yr2 (with a significance of 98 %) in meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for long-term simulations. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2018-03-20
    Beschreibung: We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat-2 SIRAL radar altimeter; ice thickness measurements from both helicopter-borne and ground-based electromagnetic-sounding; and point measurements of ice properties. This case study was carried out in April 2015 during the N-ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat-2 and ASIRAS are shown to be closer to the snow freeboard obtained by ALS than to the ice freeboard measured in situ. This case study documents the complexity of freeboard retrievals from radar altimetry. We show that even under cold (below −15°C) conditions the radar freeboard can be close to the snow freeboard on a regional scale of tens of kilometers. We derived a modal sea-ice thickness for the study region from CryoSat-2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea-ice thickness on the order of a factor 2. Our results also highlight the importance of year-to-year regional scale information about the depth and density of the snowpack, as this influences the sea-ice freeboard, the radar penetration, and is a key component of the hydrostatic balance equations used to convert radar freeboard to sea-ice thickness.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-07-01
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-03-15
    Beschreibung: Arctic sea ice is shifting from a year-round to a seasonal sea ice cover. This substantial transformation, via a reduction in Arctic sea ice extent and a thinning of its thickness, influences the amount of light entering the upper ocean. This in turn impacts under-ice algal growth and associated ecosystem dynamics. Field campaigns have provided valuable insights as to how snow and ice properties impact light penetration at fixed locations in the Arctic, but to understand the spatial variability in the under-ice light field there is a need to scale up to the pan-Arctic level. Combining information from satellites with state-of-the-art parameterizations is one means to achieve this. This study combines satellite and modeled data products to map under-ice light on a monthly time-scale from 2011 through 2018. Key limitations pertain to the availability of satellite-derived sea ice thickness, which for radar altimetry, is only available during the sea ice growth season. We clearly show that year-to-year variability in snow depth, along with the fraction of thin ice, plays a key role in how much light enters the Arctic Ocean. This is particularly significant in April, which in some regions, coincides with the beginning of the under-ice algal bloom, whereas we find that ice thickness is the main driver of under-ice light availability at the end of the melt season in October. The extension to the melt season due to a warmer Arctic means that snow accumulation has reduced, which is leading to positive trends in light transmission through snow. This, combined with a thinner ice cover, should lead to increased under-ice PAR also in the summer months.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-07-07
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-04-23
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...