GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umanzor, S., Li, Y., Bailey, D., Augyte, S., Huang, M., Marty-Rivera, M., Jannink, J., Yarish, C., & Lindell, S. Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, Saccharina spp., strains from the Northwest Atlantic. Journal of the World Aquaculture Society, (2021), https://doi.org/10.1111/jwas.12783.
    Description: Our team has initiated a selective breeding program for regional strains of sugar kelp, Saccharina latissima, to improve the competitiveness of kelp farming in the United States. Within our breeding program, we also include an endemic putative species, Saccharina angustissima, locally referred to as skinny kelp. We crossed uniclonal gametophyte cultures derived from 37 wild‐collected blades representing five sugar kelp strains and one skinny kelp strain to produce 104 unique crosses. Each cross was outplanted on a near‐shore research farm located in the Gulf of Maine (GOM). After the first farming season, our results indicated that sugar kelp and skinny kelp were interfertile, and produced mature and reproductively viable sporophytes. Morphological traits of individual blades varied depending on the parental contribution (sugar vs. skinny), with significant differences found in progeny blade length, width, thickness, and in stipe length and diameter. Despite these differences, wet weight and blade density per plot showed no statistical differences regardless of the cross. Given their published genetic similarity and their interfertility shown here, S. angustissima and S. latissima may not be different species, and may each contribute genetic diversity to breeding programs aimed at meeting ocean farming and market needs.
    Description: Funding was provided by the U.S. Department of Energy, ARPAe MARINER project contract number DE‐AR0000915 and DE‐AR0000911, AgCore Technologies of Rhode Island, and the Massachusetts Clean Energy Center, AmplifyMass Program.
    Keywords: Morphometrics ; Phenotyping ; Saccharina angustissima ; Saccharina latissima ; Seaweed aquaculture ; Selective breeding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huang, M., Robbins, K. R., Li, Y., Umanzor, S., Marty-Rivera, M., Bailey, D., Yarish, C., Lindell, S., & Jannink, J.-L. Simulation of sugar kelp (Saccharina latissima) breeding guided by practices to accelerate genetic gains. G3 Genes|Genomes|Genetics, 12(3), (2022): jkac003, https://doi.org/10.1093/g3journal/jkac003.
    Description: Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.
    Description: We acknowledge the funding support from the US Department of Energy Advanced Research Projects Agency-Energy (ARPA-E, Funding number DE-AR0000915).
    Keywords: Sugar kelp ; Saccharina latissima ; Simulation ; Breeding ; Genetic gain ; Genomic selection ; Genomic Prediction ; GenPred ; Shared Data Resource
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lapointe, B. E., Brewton, R. A., Herren, L. W., Wang, M., Hu, C., McGillicuddy, D. J., Lindell, S., Hernandez, F. J., & Morton, P. L. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nature Communications, 12(1), (2021): 3060, https://doi.org/10.1038/s41467-021-23135-7.
    Description: The pelagic brown macroalgae Sargassum spp. have grown for centuries in oligotrophic waters of the North Atlantic Ocean supported by natural nutrient sources, such as excretions from associated fishes and invertebrates, upwelling, and N2 fixation. Using a unique historical baseline, we show that since the 1980s the tissue %N of Sargassum spp. has increased by 35%, while %P has decreased by 44%, resulting in a 111% increase in the N:P ratio (13:1 to 28:1) and increased P limitation. The highest %N and δ15N values occurred in coastal waters influenced by N-rich terrestrial runoff, while lower C:N and C:P ratios occurred in winter and spring during peak river discharges. These findings suggest that increased N availability is supporting blooms of Sargassum and turning a critical nursery habitat into harmful algal blooms with catastrophic impacts on coastal ecosystems, economies, and human health.
    Description: This work was funded by the US NASA Ocean Biology and Biogeochemistry Program (80NSSC20M0264, NNX16AR74G) and Ecological Forecast Program (NNX17AF57G), NOAA RESTORE Science Program (NA17NOS4510099), National Science Foundation (NSF-OCE 85–15492 and OCE 88–12055), “Save Our Seas” Specialty License Plate funds, granted through the Harbor Branch Oceanographic Institute Foundation, Ft. Pierce, FL, and a Red Wright Fellowship from the Bermuda Biological Station. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida. D.J.M. gratefully acknowledges the Holger W. Jannasch and Columbus O’Donnell Iselin Shared Chairs for Excellence in Oceanography, as well as support from the Mill Reef Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lindell, S., & Kite-Powell, H. Meeting protein and energy needs for 10 billion people while restoring oceans. Marine Technology Society Journal, 55(3), (2021): 124–124, https://doi.org/10.4031/MTSJ.55.3.49.
    Description: Shellfish and seaweed farming provide resources, opportunities, and solutions to address a wide range of seemingly intractable global problems. Installed and managed properly, aquaculture operations can be restorative to ocean environments, counter climate change, and relieve pressure to farm sensitive terrestrial environments. For these reasons, there is growing social acceptance and political pressure for marine aquaculture expansion, and State, Federal, and International, as well as eNGO-led initiatives are underway. Now is the time to invest in multi-disciplinary science-based teams that can signpost the sustainable pathway for marine aquaculture by developing monitoring and modeling tools and protocols for measuring associated ecosystem impacts and beneficial services. The yield on that investment will be healthy food and more carbon-neutral bio-fuels grown in ways that help heal our oceans. A sustained commitment by the United States now to develop the science and technology for future ocean farms will find an enthusiastic audience in young researchers and technologist around the world, who seek better ways to improve people's lives through their science and problem solving.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, Y., Umanzor, S., Ng, C., Huang, M., Marty-Rivera, M., Bailey, D., Aydlett, M., Jannink, J.-L., Lindell, S., & Yarish, C. Skinny kelp (Saccharina angustissima) provides valuable genetics for the biomass improvement of farmed sugar kelp (Saccharina latissima). Journal of Applied Phycology, 34, (2022): 2551–2563, https://doi.org/10.1007/s10811-022-02811-1.
    Description: Saccharina latissima (sugar kelp) is one of the most widely cultivated brown marine macroalgae species in the North Atlantic and the eastern North Pacific Oceans. To meet the expanding demands of the sugar kelp mariculture industry, selecting and breeding sugar kelp that is best suited to offshore farm environments is becoming necessary. To that end, a multi-year, multi-institutional breeding program was established by the U.S. Department of Energy's (DOE) Advanced Research Projects Agency-Energy (ARPA-E) Macroalgae Research Inspiring Novel Energy Resources (MARINER) program. Hybrid sporophytes were generated using 203 unique gametophyte cultures derived from wild-collected Saccharina spp. for two seasons of farm trials (2019–2020 and 2020–2021). The wild sporophytes were collected from 10 different locations within the Gulf of Maine (USA) region, including both sugar kelp (Saccharina latissima) and the skinny kelp species (Saccharina angustissima). We harvested 232 common farm plots during these two seasons with available data. We found that farmed kelp plots with skinny kelp as parents had an average increased yield over the mean (wet weight 2.48 ± 0.90 kg m−1 and dry weight 0.32 ± 0.10 kg m−1) in both growing seasons. We also found that blade length positively correlated with biomass in skinny kelp x sugar kelp crosses or pure sugar kelp crosses. The skinny x sugar progenies had significantly longer and narrower blades than the pure sugar kelp progenies in both seasons. Overall, these findings suggest that sugar x skinny kelp crosses provide improved yield compared to pure sugar kelp crosses.
    Description: Funding was provided by the U.S. Department of Energy, ARPAe MARINER project contract number DE-AR0000915 and DE-AR0000911.
    Keywords: Saccharina latissima ; Saccharina angustissima ; Morphological trait ; Biomass ; Seaweed aquaculture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mao, X., Augyte, S., Huang, M., Hare, M. P., Bailey, D., Umanzor, S., Marty-Rivera, M., Robbins, K. R., Yarish, C., Lindell, S., & Jannink, J. Population genetics of sugar kelp throughout the Northeastern United States genome-wide markers. Frontiers in Marine Science, 7, (2020): 694, doi:10.3389/fmars.2020.00694.
    Description: An assessment of genetic diversity of marine populations is critical not only for the understanding and preserving natural biodiversity but also for its commercial potential. As commercial demand rises for marine resources, it is critical to generate baseline information for monitoring wild populations. Furthermore, anthropogenic stressors on the coastal environment, such as warming sea temperatures and overharvesting of wild populations, are leading to the destruction of keystone marine species such as kelps. In this study, we conducted a fine-scale genetic analysis using genome-wide high-density markers on Northwest Atlantic sugar kelp. The population structure for a total of 149 samples from the Gulf of Maine (GOM) and Southern New England (SNE) was investigated using AMOVA, FST, admixture, and PCoA. Genome-wide association analyses were conducted for six morphological traits, and the extended Lewontin and Krakauer (FLK) test was used to detect selection signatures. Our results indicate that the GOM region is more heterogeneous than SNE. These two regions have large genetic difference (between-location FST ranged from 0.21 to 0.32) and were separated by Cape Cod, which is known to be the biogeographic barrier for other taxa. We detected one significant SNP (P = 2.03 × 10–7) associated with stipe length, and 248 SNPs with higher-than-neutral differentiation. The findings of this study provide baseline knowledge on sugar kelp population genetics for future monitoring, managing and potentially restoring wild populations, as well as assisting in selective breeding to improve desirable traits for future commercialization opportunities.
    Description: We acknowledge funding support from the U.S. Depaertment of Energy ARPA-E (DE-AR0000915), and the Massachusetts Clean Energy Center (AmplifyMass).
    Keywords: Saccharina latissima ; Population structure ; Genome-wide analysis ; Cultivation ; Northeastern United States
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...