GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-09-23
    Description: Autonomous systems measuring the partial pressure of CO2 (pCO2) in surface waters on commercial carrier ships (Voluntary Observing Ship, VOS), which allows for high spatiotemporal data coverage, are a major component of the Ocean Thematic Centre (OTC) data stream. Currently, ICOS operates lines in the Atlantic, North Sea and the Baltic. All lines are determining pCO2 by measuring CO2 in air that has been equilibrated with seawater. As part of the European H2020 project RINGO (https://www.icos-ri.eu/ringo), we are evaluating the possibility of using VOS to expand the atmospheric network. We will provide technical solutions for three different settings and approaches, and assess the added value for the atmospheric observation network. Two systems are designed as stand-alone modules for continuous atmospheric CO2 and CH4 measurements, following the technological requirements defined by the ATC, and will be operated in the Baltic (high anthropogenic influence) and on a line between France and Brazil (clean marine air, large temperature and humidity gradient). A second approach is using the existing instrumentation for seawater measurements (North Atlantic), which we aim to improve in order to make these measurements usable for the atmospheric research community. This is an effort that connects the ocean research community with the Central Analytical Laboratories (CAL; testing an extended range of standard gases, providing flask sampling opportunity), the Atmospheric Thematic Centre (ATC; work on data streams that can be digested by the ATC system), and the modelling community (identifying useful sampling strategies). Here we present a status update of the ongoing work, which is a joined effort of the atmospheric and ocean community within ICOS and relying on the expertise of both fields.
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-26
    Description: The two Cape hake species of the southern Benguela ecosystem, the shallow-water and deep-water hakes Merluccius capensis and M. paradoxus , are economically the most important marine resources in South Africa. Recruitment is a key process in the dynamics of marine organisms, yet very little is known about the early life history of Cape hakes, especially the location of spawning grounds and transport of eggs and larvae. For each species, ichthyoplankton dispersal off South Africa is simulated by coupling oceanographic simulations to an individual-based model in order to track virtual individuals. Results indicate that the most favorable spawning areas for transport to nursery areas are located off the south-western coast and the eastern Agulhas Bank, and highlight partly different drift routes followed by the two ichthyoplankton species off Cape Columbine. Transport from spawning to nursery areas is the highest in austral winter for a spawning depth ranging between 0 and 100 m. These modeling results are in broad agreement with available knowledge on the ecology of Cape hakes. The present work on Cape hakes complements previous modeling studies on anchovy and sardine in the same area. Taken together, these studies underline the correspondence between cross-shore (for hakes) or alongshore (for anchovy and sardine) transport mechanisms and the spawning strategies used by these key species of the southern Benguela ecosystem.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...