GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (δ18O and δ13C) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16–6ka). We interpret stalagmite δ18O as reflecting ISM strength, whereas δ13C appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the δ18O record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the Bølling-Allerød and Holocene. Local conditions inferred from the δ13C record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the δ18O record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-27
    Description: Speleothems, secondary cave carbonates, are important tools for climate reconstruction, especially as they often can be very precisely dated with the U-Th method. If the U-Th method fails, dating becomes difficult, and often results in abandonment of samples and study sites. Radiocarbon dating is the only other radiometric dating technique applicable to the last ∼50 ka, but presents complexities related to temporal variability of the reservoir effect in speleothems. Thus, radiocarbon dating of speleothems is not straightforward, and there are currently no publicly available tools to define proper age-depth relationships with this method. Here, we present an improved version of a previously published radiocarbon based age-depth modelling approach (star, Lechleitner et al., 2016b), which is now made freely available. The software is easy to use and provides the possibility to obtain reliable age-depth relationships, without prior knowledge of reservoir effects and their variability. In addition, star is able to detect and handle growth stops and phases with different growth rates. We test star on artificially constructed data sets and illustrate steps to improve the model performance. Furthermore, we apply the new approach to published radiocarbon data of U-Th dated stalagmites. This offers the possibility to investigate the strengths and weaknesses of the new approach with respect to potentially significant long term trends in the radiocarbon reservoir effect, which might otherwise remain undetected. In summary, we have produced a valuable software, which easily enables to construct age-depth relationships on the basis of reservoir effect disturbed radiocarbon measurements.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-10
    Description: Stalagmites are an extraordinarily powerful resource for the reconstruction of climatological palaeoseasonality. Here, we provide a review of different types of seasonality preserved by stalagmites and methods for extracting this information. A new drip classification scheme is introduced, which facilitates the identification of stalagmites fed by seasonally responsive drips and which highlights the wide variability in drip types feeding stalagmites. This hydrological variability, combined with seasonality in Earth atmospheric processes, meteoric precipitation, biological processes within the soil, and cave atmosphere composition means that every stalagmite retains a different and distinct (but correct) record of environmental conditions. Replication of a record is extremely useful but should not be expected unless comparing stalagmites affected by the same processes in the same proportion. A short overview of common microanalytical techniques is presented, and suggested best practice discussed. In addition to geochemical methods, a new modelling technique for extracting meteoric precipitation and temperature palaeoseasonality from stalagmite δ18O data is discussed and tested with both synthetic and real-world datasets. Finally, world maps of temperature, meteoric precipitation amount, and meteoric precipitation oxygen isotope ratio seasonality are presented and discussed, with an aim of helping to identify regions most sensitive to shifts in seasonality.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-28
    Description: The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-07
    Description: The climatic controls on the stable carbon isotopic composition (δ13C) of speleothem carbonate are less often discussed in the scientific literature in contrast to the frequently used stable oxygen isotopes. Various local processes influence speleothem δ13C values and confident and detailed interpretations of this proxy are often complex. A better understanding of speleothem δ13C values is critical to improving the amount of information that can be gained from existing and future records. This contribution aims to disentangle the various processes governing speleothem δ13C values and assess their relative importance. Using a large data set of previously published records we examine the spatial imprint of climate-related processes in speleothem δ13C values deposited post-1900 CE, a period during which global temperature and climate data is readily available. Additionally, we investigate the causes for differences in average δ13C values and growth rate under identical climatic conditions by analysing pairs of contemporaneously deposited speleothems from the same caves. This approach allows to focus on carbonate dissolution and fractionation processes during carbonate precipitation, which we evaluate using existing geochemical models. Our analysis of a large global data set of records reveals evidence for a temperature control, likely driven by vegetation and soil processes, on δ13C values in recently deposited speleothems. Moreover, data-model intercomparison shows that calcite precipitation occurring along water flow paths prior to reaching the top of the speleothem can explain the wide δ13C range observed for concurrently deposited samples from the same cave. We demonstrate that using the combined information of contemporaneously growing speleothems is a powerful tool to decipher controls on δ13C values, which facilitates a more detailed discussion of speleothem δ13C values as a proxy for climate conditions and local soil-karst processes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...