GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1440-1770
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography
    Notes: An artificially destratified reservoir was simulated with the freshwater phytoplankton model PROTECH (Phytoplankton Responses To Environmental Change). The chosen site for validation was a highly managed drinking water supply reservoir (Myponga Reservoir, South Australia). Chemical dosing using copper sulphate (CuSO4) and artificial mixing via an aerator and two raft-mounted mechanical surface mixers (hereafter referred to as surface mixers) are used at Myponga to manage water quality, in particular the threat of cyanobacteria growth. The phytoplankton community was adequately modelled and showed that the community was dominated by species tolerant of low light doses (R-type strategists). The light limitation in the water body was found to be the controlling factor on phytoplankton succession. Subsequently, small fast-growing species and larger motile phytoplankton (C and CS-type, respectively) do not have the opportunity to dominate under all simulated conditions, diminishing the need for CuSO4 dosing. These simulations demonstrated that the individual and combined impact of the management strategies reduces the total algal biomass, but have minimal effect upon phytoplankton functional-type succession, and R-type species continued to dominate under all simulated scenarios. It was concluded that, due to the light-limitation and current nutrient availability in Myponga Reservoir, the probability of persistent populations of undesirable scum-forming cyanobacteria is minimal, even in the absence of artificial control.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...