GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: This work describes for the first time the embryonic development of the tropical scallop Nodipecten nodosus. Larval and post-larval growth parameters and some characteristics of larvae shell morphology were also ascertained. The larvae were obtained from the induced spawning of a group of broodstocks under controlled laboratory conditions. After fertilization, larval cultivation was carried out in conical tanks at a temperature of 26–27 °C. Larval density was controlled as a function of larval growth to give 10, 5 and 3 larvae mL−1 from days 1, 3 and 8 respectively. The larvae were nourished with a 1:1 mix of Isochrysis galbana (clone T-ISO) and Chaetoceros gracilis in portions varying between 30 000 and 70 000 cells mL−1. Expulsion of polar groups was observed 5 and 15 min after fertilization, whereas the first cellular division occurred after 30 min. The first gastrule ciliates and trocophore larvae were noted after 8 and 18 h had elapsed, respectively, whereas prodissoconch I, or D-larvae, were discerned after 26 h. Subsequently, larvae with prodissoconch II or veliger-conch appeared at 30 h. Larval development continued for 10–12 days, followed by metamorphosis, at an approximate length of 208–230 µm. The growth of the post-larvae was evaluated for 9 days. Larval and post-larval growth corresponded to the linear equations L = 71.85 + 10.85t, r2 = 0.99, and L = 44.09 + 17.81t, r2 = 0.94 respectively. Accordingly, larval morphology and size disparities are discussed with respect to other tropical pectinids.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-16
    Description: The increase in atmospheric carbon dioxide (CO2) results in acidification of the oceans, expected to lead to the fastest drop in ocean pH in the last 300 million years, if anthropogenic emissions are continued at present rate. Due to higher solubility of gases in cold waters and increased exposure to the atmosphere by decreasing ice cover, the Arctic Ocean will be among the areas most strongly affected by ocean acidification. Yet, the response of the plankton community of high latitudes to ocean acidification has not been studied so far. This work is part of the Arctic campaign of the European Project on Ocean Acidification (EPOCA) in 2010, employing 9 in situ mesocosms of about 45 000 l each to simulate ocean acidification in Kongsfjorden, Svalbard (78°56.2' N 11°53.6' E). In the present study, we investigated effects of elevated CO2 on the composition and richness of particle attached (PA; 〉3 μm) and free living (FL; 〈3 μm 〉0.2 μm) bacterial communities by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms and the surrounding fjord, ranging from 185 to 1050 initial μatm pCO2. ARISA was able to resolve about 20–30 bacterial band-classes per sample and allowed for a detailed investigation of the explicit richness. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom (phase 3 of the experiment), number of ARISA-band classes in the PA-community were reduced at low and medium CO2 (∼180–600 μatm) by about 25%, while it was more or less stable at high CO2 (∼ 650–800 μatm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA-bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2-treatments, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-09
    Description: The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum , protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter , cell motility and/or DNA replication and repair system genes; and for Niastella , cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-18
    Description: Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-15
    Description: Motivation: The sheer scale of the metagenomic and metatranscriptomic datasets that are now available warrants the development of automated protocols for organizing, annotating and comparing the samples in terms of their metabolic profiles. We describe a user-friendly java program FROMP (Fragment Recruitment on Metabolic Pathways) for mapping and visualizing enzyme annotations onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways or custom-made pathways and comparing the samples in terms of their Pathway Completeness Scores, their relative Activity Scores or enzyme enrichment odds ratios. This program along with our fully configurable PERL-based annotation organization pipeline Meta2Pro (METAbolic PROfiling of META-omic data) offers a quick and accurate standalone solution for metabolic profiling of environmental samples or cultures from different treatments. Apart from pictorial comparisons, FROMP can also generate score matrices for multiple meta-omics samples, which can be used directly by other statistical programs. Availability : The source code and documentation for FROMP can be downloaded from https://sites.google.com/site/dhwanidesai/home/software along with the Meta2Pro collection of PERL scripts. Supplementary data are available at https://sites.google.com/site/dhwanidesai/home/fromp_suppl . Contact : Dhwani.Desai@Dal.Ca Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-13
    Description: The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-22
    Description: We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr -1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO 2 uptake is offset to a small extent by an increase in ocean N 2 O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...