GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kim, Ja-Myung; Lee, Kitack; Shin, Kyoungsoon; Kang, Jung-Hoon; Lee, Hyun-Woo; Kim, Miok; Jang, Pung-Guk; Jang, Min-Chul (2006): The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629-1636, https://doi.org/10.4319/lo.2006.51.4.1629
    Publication Date: 2024-03-15
    Description: We examine the effects of seawater pCO2 concentration of 25, 41, and 76 kPa (250, 400, and 750 matm) on the growth rate of a natural assemblage of mixed phytoplankton obtained from a carefully controlled, 14-d mesocosm experiment. Throughout the experiment period, in all enclosures, two phytoplankton taxa (microflagellates and cryptomonads) and two diatom species (Skeletonema costatum and Nitzschia spp.) account for approximately 90% of the phytoplankton community. During the nutrient-replete period from day 9 to day 14 populations of Skeletonema costatum and Nitzschia spp. increased substantially; however, only Skeletonema costatum showed an increase in growth rate with increasing seawater pCO2. Not all diatom species in Korean coastal waters are sensitive to seawater pCO2 under nutrient-replete conditions.
    Keywords: µ-flagellates; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Counting; Cryptomonas spp.; Element analyser CHN; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Field experiment; Flow injection analysis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared sensor; Kim_etal_06; Nitrate; Nitrogen, organic, particulate; Nitzschia spp.; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Salinity; Silicate; Skeletonema costatum; Temperate; Temperature, water; Total organic carbon analyzer (TOC-VCPH)
    Type: Dataset
    Format: text/tab-separated-values, 849 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Park, K T; Lee, Kitack; Shin, Kyoungsoon; Yang, Eun Jin; Hyun, Bonggil; Kim, Ja-Myung; Noh, Jae Hoon; Kim, Miok; Kong, Bokyung; Choi, Dong Han; Choi, Su-Jin; Jang, Pung-Guk; Jeong, Hae Jin (2014): Direct Linkage between Dimethyl Sulfide Production and Microzooplankton Grazing, Resulting from Prey Composition Change under High Partial Pressure of Carbon Dioxide Conditions. Environmental Science & Technology, 48(9), 4750-4756, https://doi.org/10.1021/es403351h
    Publication Date: 2024-03-15
    Description: Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
    Keywords: 19-Hexanoyloxyfucoxanthin; Alexandrium sp.; Alkalinity, total; Alloxanthin; Ammonia; Aragonite saturation state; Behaviour; Bicarbonate ion; Biomass; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cerataulina pelagica; Chlorophyll a; Chlorophyll b; Coast and continental shelf; Community composition and diversity; Date; Dimethyl sulfide; Dimethylsulfoniopropionate, particulate; Dimethylsulfoniopropionate lyase activity; Dimethylsulfoniopropionate lyase activity, standard deviation; Entire community; EXP; Experiment; Field experiment; Fucoxanthin; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Grazing rate; Grazing rate, standard error; Identification; Incubation duration; Jangmok; Mesocosm or benthocosm; Nitrate and Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Peridinin; pH; Phosphate; Primary production/Photosynthesis; Salinity; Silicate; Species; Temperate; Temperature; Temperature, water; Treatment; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 29214 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kim, Ju Hyoung; Kim, Kwang Young; Kang, Eun Ju; Lee, Kitack; Kim, Ja-Myung; Park, K T; Shin, Kyoungsoon; Hyun, B; Jeong, Hae Jin (2013): Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences, 10(11), 7525-7535, https://doi.org/10.5194/bg-10-7525-2013
    Publication Date: 2024-03-15
    Description: A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Date; Effective quantum yield; Electron transport rate, relative; Electron transport rate efficiency; Entire community; EXP; Experiment; Field experiment; Figure; Fluorometric; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Geoje_Island; Grazing rate; Grazing rate, standard deviation; Gross community production of carbon dioxide; Gross community production of carbon dioxide, cumulative; Gross community production of carbon dioxide, per chlorophyll a; Gross photosynthesis rate, carbon dioxide, per chlorophyll a; Growth/Morphology; Identification; Incubation duration; Irradiance; Maximal electron transport rate, relative; Maximum potential capacity of photosynthesis; Mesocosm or benthocosm; Nitrate and Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Photosynthetic efficiency, carbon production; Primary production/Photosynthesis; Salinity; Saturation light intensity; Silicate; Species; Table; Temperate; Temperature; Temperature, water; Time of day; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 45219 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Shi, Dalin; Kranz, Sven A; Kim, Ja-Myung; Morel, Francois M M (2012): Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proceedings of the National Academy of Sciences, 109(45), E3094-E3100, https://doi.org/10.1073/pnas.1216012109
    Publication Date: 2024-03-15
    Description: Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Nitrogen, organic, particulate ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll a/carbon ratio; Chlorophyll a/carbon ratio, standard deviation; Cyanobacteria; Duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Identification; Incubation duration; Iron; Iron, cellular quota; Iron, cellular quota, standard deviation; Iron, steady state; Iron protein of nitrogenase; Iron protein of nitrogenase, standard deviation; Iron uptake rate; Iron uptake rate, per chlorophyll a; Iron uptake rate, per chlorophyll a, standard deviation; Iron uptake rate, standard deviation; Laboratory experiment; Laboratory strains; Micro-nutrients; Net hydrogen production, per chlorophyll a; Net hydrogen production, per chlorophyll a, standard deviation; Nitrogen fixation rate; Nitrogen fixation rate, standard deviation; Nitrogen fixation rate per chlorophyll a; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Photosynthetic carbon fixation rate; Photosynthetic carbon fixation rate, standard deviation; Photosynthetic protein, PsbA, standard deviation; Photosynthetic protein, PsbC; Photosynthetic protein, PsbC, standard deviation; Photosynthetic protein PsbA; Photosynthetic protein Rubisco; Photosynthetic protein Rubisco, standard deviation; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Replicate; Salinity; Single species; Species; Spectrophotometric; Temperature, water; Treatment; Trichodesmium erythraeum
    Type: Dataset
    Format: text/tab-separated-values, 6960 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-30
    Description: Photosynthesis by phytoplankton in sunlit surface waters transforms inorganic carbon and nutrients into organic matter, a portion of which is subsequently transported vertically through the water column by the process known as the biological carbon pump (BCP). The BCP sustains the steep vertical gradient in total dissolved carbon, thereby contributing to net carbon sequestration. Any changes in the vertical transportation of the organic matter as a result of future climate variations will directly affect surface ocean carbon dioxide (CO 2) concentrations, and subsequently influence oceanic uptake of atmospheric CO 2 and climate. Here we present results of experiments designed to investigate the potential effects of ocean acidification and warming on the BCP. These perturbation experiments were carried out in enclosures (3,000 L volume) in a controlled mesocosm facility that mimicked future pCO 2 (∼900 ppmv) and temperature (3°C higher than ambient) conditions. The elevated CO 2 and temperature treatments disproportionately enhanced the ratio of dissolved organic carbon (DOC) production to particulate organic carbon (POC) production, whereas the total organic carbon (TOC) production remained relatively constant under all conditions tested. A greater partitioning of organic carbon into the DOC pool indicated a shift in the organic carbon flow from the particulate to dissolved forms, which may affect the major pathways involved in organic carbon export and sequestration under future ocean conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...