GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: LPS is a fundamental constituent of the outer membrane of all Gram-negative bacteria, and the lipid A domain plays a central role in the induction of inflammatory responses. We identified genes of the Neisseria gonorrhoeae lipid A biosynthetic pathway by searching the complete gonococcal genome sequence with sequences of known enzymes from other species. The lpxLII gene was disrupted by an insertion–deletion in an attenuated aroA mutant of the gonococcal strain MS11. Lipopolysaccharide (LPS) and lipid A analysis demonstrated that the lpxLII mutant had synthesized an altered LPS molecule lacking a single lauric fatty acid residue in the GlcN II of the lipid A backbone. LPS of the lpxLII mutant had a markedly reduced ability to induce the proinflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 from human macrophages and IL-8 from polymorphonuclear cells. This study demonstrates that the lpxLII gene in gonococci encodes for a late-functioning lauroyl acyl transferase that adds a lauric acid at position 2′ in the lipid A backbone. The presence of lauric acid at such a position appears to be crucial for the induction of full inflammatory responses by N. gonorrhoeae LPS.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Our perception that host–bacterial interactions lead to disease comes from rare, unsuccessful interactions resulting in the development of detectable symptoms. In contrast, the majority of host–bacterial interactions go unnoticed as the host and bacteria perceive each other to be no threat. In July 2004, a focused international symposium on epithelial–bacterial pathogen interactions was held in Newcastle upon Tyne (UK). The symposium concentrated on recent advances in our understanding of bacterial interactions at respiratory and gastrointestinal mucosal epithelial layers. For the host these epithelial tissues represent a first line of defence against invading bacterial pathogens. Through the discovery that the innate immune system plays a pivotal role during host–bacterial interactions, it has become clear that epithelia are being utilized by the host to monitor or communicate with both pathogenic and commensal bacteria. Interest in understanding the bacterial perspective of these interactions has lead researchers to realize that the bacteria utilize the same factors associated with disease to establish successful long-term interactions. Here we discuss several common themes and concepts that emerged from recent studies that have allowed physiologists and microbiologists to interact at a common interface similar to their counterparts – epithelia and bacterial pathogens. These studies highlight the need for further multidisciplinary studies into how the host differentiates between pathogenic and commensal bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...