GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Hyperfine interactions 64 (1991), S. 615-633 
    ISSN: 1572-9540
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this paper we review our recent experiments conducted at TRIUMF on muonium diffusion in alkali halides. First, the technique of longitudinal-field muonium spin relaxation (T 1) due to nuclear hyperfine interaction, an indispensabletour de force for the present work. is described. It is demonstrated in KCl that the technique provides spectacular sensitivity for muonium diffusion as well as determining the average nuclear hyperfine coupling constant. The muonium hop rate shows a minimum (T *≃80 K) and steep increase with decreasing temperature. The result is compared with the current theory of quantum diffusion in non-metallic crystals. A few more sets of new data may be presented for other alkali halides. In addition, we show that muonium forms a delocalized state in NaCl as evidenced by a large change of the average nuclear hyperfine parameter. Related topics of local tunneling system may be briefly reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hyperfine interactions 87 (1994), S. 979-984 
    ISSN: 1572-9540
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In order to shed new light on the initial loss of muon spin polarization, or socalled “missing fraction”, which is commonly observed in non-metallic solids, we have studied muon-induced excitation in various alkali halides by measuring the luminescences associated with the radiative decay of the self-trapped excitons (STE). The result strongly suggests that the spin-exchange interaction between muonium and muon radiolysis products including STE's causes fast muon depolarization in those materials.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...