GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (143 pages)
    Edition: 1st ed.
    ISBN: 9783642614040
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Eurasian climates of today, 10 million and 3O million years ago are simulated using an atmospheric general circulation model that incorporates realistic continental geography and epicontinental sea distributions. The resulting climates compare well with various palaeoclimate records. The ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 311 (1984), S. 24-29 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] H218O and HDO are important climatic tracers largely used to reconstruct continental palaeoclimates. The only thorough way to compare isotopic distributions in precipitation for modern and palaeoconditions is to simulate isotope cycles using atmospheric general circulation ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We have conducted four numerical experiments with an atmospheric general circulation model (AGCM) to investigate the sensitivity of Asian and African monsoons to small changes (−5 to +12%), with respect to present-day, in incoming solar radiation at the top of the atmosphere. We show that, during the mid-Holocene (6 kBP where kBP means thousands of years before present-day) and the last interglacial (126 kBP), the Northern Hemisphere seasonal contrast was increased, with warmer summers and colder winters. At the time of glacial inception (115 kBP) however, summers were cooler and winters milder. As a consequence, Asia and tropical North Africa experienced stronger (weaker) summer monsoons 6 and 126 kBP (115 kBP), in agreement with previous numerical studies. This present study shows that summer warming/cooling of Eurasia and North Africa induced a shift of the main low-level convergence cell along a northwest/southeast transect. When land was warmer (during the summer months 6 and 126 kBP), the monsoon winds converged further inland bringing more moisture into northern India, western China and the southern Sahara. The southern tips of India, Indochina and southeastern China, as well as equatorial North Africa became drier. When land was cooler (during the summer 115 kBP), the main convergence zone was located over the west Pacific and the wet (dry) areas were those that were dry (wet) 6 and 126 kBP. The location and intensity of the simulated precipitation maxima were therefore very sensitive to changes in insolation. However the total amount of monsoon rain in Asia as well as in Africa remained remarkably stable through the time periods studied. These simulated migrations of convective activities were accompanied by changes in the nature of precipitation events: increased monsoon rains in these experiments were always associated with more high precipitation events (〉 5 mm day −1), and fewer light showers (≤1 mm day−). Rainy days with rates between 1 and 5 mm day−1 were almost unchanged.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. We have conducted four numerical experiments with an atmospheric general circulation model (AGCM) to investigate the sensitivity of Asian and African monsoons to small changes (–5 to +12%), with respect to present-day, in incoming solar radiation at the top of the atmosphere. We show that, during the mid-Holocene (6 kBP where kBP means thousands of years before present-day) and the last interglacial (126 kBP), the Northern Hemisphere seasonal contrast was increased, with warmer summers and colder winters. At the time of glacial inception (115 kBP) however, summers were cooler and winters milder. As a consequence, Asia and tropical North Africa experienced stronger (weaker) summer monsoons 6 and 126 kBP (115 kBP), in agreement with previous numerical studies. This present study shows that summer warming/cooling of Eurasia and North Africa induced a shift of the main low-level convergence cell along a northwest/southeast transect. When land was warmer (during the summer months 6 and 126 kBP), the monsoon winds converged further inland bringing more moisture into northern India, western China and the southern Sahara. The southern tips of India, Indochina and southeastern China, as well as equatorial North Africa became drier. When land was cooler (during the summer 115 kBP), the main convergence zone was located over the west Pacific and the wet (dry) areas were those that were dry (wet) 6 and 126 kBP. The location and intensity of the simulated precipitation maxima were therefore very sensitive to changes in insolation. However the total amount of monsoon rain in Asia as well as in Africa remained remarkably stable through the time periods studied. These simulated migrations of convective activities were accompanied by changes in the nature of precipitation events: increased monsoon rains in these experiments were always associated with more high precipitation events (〉5 mm day–1), and fewer light showers (≤1 mm day–1). Rainy days with rates between 1 and 5 mm day–1 were almost unchanged.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...