GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Natural resources -- Brazil -- Management. ; Action research -- Brazil. ; Electronic books.
    Description / Table of Contents: This work evaluates the merits of a widely-used approach to natural resource management, participatory action research (PAR), an approach to resource management that strives to link researchers with farmers and other local residents whose lives are effected by long-range conservation programmes. The authors begin the book with the history of PAR, and then use a variety of case studies that chronicle sustainable development efforts in Brazil. They evaluate the strengths and weaknesses of these efforts and suggest specific ways to improve on future PAR efforts.
    Type of Medium: Online Resource
    Pages: 1 online resource (244 pages)
    Edition: 1st ed.
    ISBN: 9780203508565
    DDC: 333.71609811
    Language: English
    Note: Intro -- PARTICIPATORY ACTION RESEARCH IN NATURAL RESOURCE MANAGEMENT -- Copyright -- Contents -- Preface -- Introduction -- Part I Background -- Chapter 1 Approaches to Resource Conservation -- Traditional Scientific Approaches -- Conventional Methods of Intervention for Natural Resource Management -- Participatory Approaches -- Evaluation of an Alternative -- Chapter 2 Participatory Action Research -- Action Research: A Brief History -- Applications of Participatory Action Research for Natural Resource Management -- Is Participatory Action Research Scientific? -- Conclusion -- Chapter 3 Conceptual Framework -- The Interpretationist Tradition -- An Interpretative Model -- The Extended Rationality Postulate -- The Constructivist Model -- Case Study Methods -- Chapter 4 The Resource Management Problem -- Tropical Deforestation -- The Setting -- PAET: Programa Agro-Ecologico da Transamazônica -- Part II The Participatory Action Research Experience -- Chapter 5 The Partnership with Farmers' Organizations -- The Starting Point -- Development of the PAET Program -- Activities Undertaken -- Results of the Partnership with Farmers' Organizations -- Chapter 6 Case Studies of the Multiple Stakeholders Platform Method -- Assumptions About the Multiple Stakeholders Platform Method Used in Municipal Participatory Planning -- Case I: Uruará -- Case II: Porto de Moz -- Case III: Altamira -- Lessons from the Case Studies -- Conclusions on the Platform Method of Participatory Planning -- The Potential of Participatory Action Research for Testing Methods -- Photo Essay -- Chapter 7 Results at the Farm Level -- Research Development on Perennial Crops and Agroforestry -- The Credit Debate -- Evaluation of PAET from the Farmers' Point of View -- The Learning Process -- Conclusion -- Part III Lessons from the Participatory Action Research in the Transamazônica. , Chapter 8 The Relationship Between Farmers and Researchers: Why There Was No Common Strategy -- Lack of MPST Interest in Sustainable Development and Better Management of Natural Resources -- The Farmers' Perspective -- Failure to Communicate? -- Evaluation of the Partnership Between Researchers and Farmers -- Chapter 9 Deforestation in the Brazilian Amazon: A Comparison of Conventional Diagnoses and Diagnoses Based on PAR -- Conventional Diagnoses -- Proposals to Mitigate Deforestation -- Overview of Conventional Analyses and Solutions -- The LAET Diagnosis -- Proposals for Improving Farming Systems -- Summary of LAET's Diagnosis -- Comparison of PAR and Conventional Diagnoses -- Identification of Applied Research Priorities -- Chapter 10 Evaluation of the Participatory Action Research Approach -- Diagnosis -- Methods of Intervention -- Process Analysis -- Linking Action Research and Basic Research -- Results at the Field Level -- Scaling Up to the National Level -- Conditions for Developing New Participatory Action Research Projects -- Conclusions on Participatory Action Research -- References -- Appendices -- Appendix 1 Acronyms and Abbreviations -- Appendix 2 LAET Publications -- Author Index -- Subject Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Agricultural ecology-Amazon River Region-Case studies. ; Electronic books.
    Description / Table of Contents: Case Studies of Exosystem Dynamics Under a Spectrum of Land Use-Intensities.
    Type of Medium: Online Resource
    Pages: 1 online resource (143 pages)
    Edition: 1st ed.
    ISBN: 9781461246589
    Series Statement: Ecological Studies ; v.60
    DDC: 634.909811
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    London :Taylor & Francis Group,
    Keywords: Sustainable development. ; Electronic books.
    Description / Table of Contents: First Published in 1998. Routledge is an imprint of Taylor & Francis, an informa company.
    Type of Medium: Online Resource
    Pages: 1 online resource (200 pages)
    Edition: 1st ed.
    ISBN: 9781134415540
    DDC: 333.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- INTRODUCTION -- 1 THE RATCHET EFFECT -- The Mechanical Round -- The Chemical Round -- The Genetic Round -- The Tightening Ratchet -- 2 THE PROBLEM OF SCALE -- Interaction with Technology -- Meat and Dairy Production -- Scale and Forestry -- Irrigation and Scale -- Scale and Loss of Species Diversity -- 3 AN ALTERNATIVE PHILOSOPHY -- Working with Nature -- Economic Feasibility -- Conclusion -- 4 THE BOTTOMS-UP APPROACH -- 5 PLANT-PLANT INTERACTIONS -- Negative Interactions -- Positive Interactions -- Intercropping in Agriculture -- Mixed Species Forest Plantations -- Management for Facilitation and Complementarity -- 6 INTERACTIONS IN THE SOIL -- Functions of Soil Organisms -- Changes in the Soil System Following Cultivation -- How We Compensate for the Loss of Nature's Services -- Conclusion -- 7 PEST AND DISEASE INTERACTIONS -- Pests -- Disease -- Integrated Pest Management -- Economic Analysis -- Environmental Disturbance, and Pests and Disease -- Conclusion -- 8 INTERACTIONS DURING SUCCESSION -- Factors Influencing Succession -- Trends During Succession -- Fighting Succession -- Working with Succession -- Conclusion -- 9 THE TOP-DOWN APPROACH -- An Alternative Approach -- Energy and Power Output -- Guiding Principle for Resource Management -- 10 CASE STUDIES OF RESOURCE MANAGEMENT -- Transition from Sustainability to Unsustainability -- Transition from Unsustainability to Sustainability -- Factors Causing Transitions -- 11 CONCLUSION -- Literature Cited -- Subject Index -- Author Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Sustainable agriculture -- Southern States. ; Agriculture. ; Electronic books.
    Description / Table of Contents: This book presents applied tools and practices for sustainable agriculture. It details lessons learned from the Southeastern USA, which can be applied worldwide. All concepts are reinforced by numerous case studies, applied tools, and examples.
    Type of Medium: Online Resource
    Pages: 1 online resource (261 pages)
    Edition: 1st ed.
    ISBN: 9789400767904
    Series Statement: Environmental Challenges and Solutions Series ; v.1
    DDC: 630.975
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: A Systems (Holistic) Approach to Sustainable Agriculture -- 1.1 Energy Efficiency -- 1.2 A Systems Definition of Agricultural Sustainability -- 1.3 Is Energy Efficiency the Key to Sustainability? -- 1.4 Why Does Agriculture Need Energy Subsidies? -- 1.5 Energy as a Limiting Factor -- 1.6 Other Views of Sustainability -- 1.6.1 Critique of the Definitions -- 1.6.2 Panarchy -- 1.7 What Is a System? -- 1.7.1 Mechanical Systems -- 1.7.2 Biological Systems -- 1.7.2.1 Human Bodies -- 1.7.2.2 Feedback in Human Bodies -- 1.7.2.3 Ecological Systems -- 1.8 Control in Ecological Systems -- 1.8.1 Homeostasis -- 1.8.2 Optimum Efficiency for Maximum Power Output -- 1.9 Boundaries of Ecological Systems -- 1.10 The Value of a Systems (Holistic) Approach -- 1.10.1 Holism: The Foundation for Ecosystem Analysis -- 1.11 Holistic Properties of Sustainable Systems -- 1.11.1 Energy Use Efficiency -- 1.11.2 Stability -- 1.11.2.1 Resistance and Resilience -- Natural Ecosystems -- Agricultural Ecosystems -- 1.11.3 Nutrient Cycling Efficiency -- 1.11.4 Diversity and Stability -- 1.11.5 Succession -- 1.11.5.1 Succession in the Piedmont -- 1.11.6 Productivity -- 1.11.7 Respiration and Decomposition -- 1.11.8 Pollution Discharge -- References -- Chapter 2: A History of Unsustainability in Agriculture -- 2.1 Pre-History -- 2.2 Mesopotamia -- 2.3 The Mediterranean -- 2.4 The Middle Ages and Medieval Europe -- 2.5 The Mayan Civilization -- 2.6 The Industrial Revolution - Energy Intensification -- 2.6.1 Plows -- 2.6.2 Dams and Levees - Formations Used to Store and Divert Energy -- 2.7 The Agricultural Revolution in North America -- 2.7.1 The Nineteenth Century -- 2.7.2 Subsidies -- 2.7.3 Concentrated Animal Feeding Operations -- 2.8 The Green Revolution -- 2.8.1 Commercial Nitrogen Fixation -- 2.8.2 Pesticides. , 2.8.3 Herbicides -- 2.8.4 Social Aspects of the Green Revolution -- 2.9 The Second Green Revolution -- 2.9.1 Thermodynamic Considerations -- 2.9.2 Sustainability of Green Revolutions -- 2.9.3 A Tale of Two Botanies -- References -- Chapter 3: Political and Economic Challenges to Creating a Sustainable Agriculture -- 3.1 Introduction -- 3.2 Dilemmas of Two Farmers -- 3.3 The Large Scale Commodity Farmer -- 3.3.1 Subsidies -- 3.3.1.1 Is a Completely Free Market the Answer? -- 3.3.2 Tariffs -- 3.3.3 Cultural/Mindset -- 3.3.4 Social -- 3.3.5 Transition Costs -- 3.3.6 Lack of Evidence -- 3.3.7 Risk Aversion -- 3.4 The Small Scale Organic Farmer -- 3.4.1 Regulations -- 3.4.1.1 How USDA Regulations Hurt Small Sustainable Farmers -- 3.4.2 Financing -- 3.4.3 Access to Land -- 3.4.4 Competition -- 3.4.4.1 Specialization and Quality Control -- 3.4.5 Marketing -- 3.4.6 Information -- 3.5 Some Intractable Barriers -- 3.5.1 Vested Interests -- 3.5.2 Reductionistic Science -- 3.5.3 Misdirected Government Policies -- 3.5.4 Failure of the Economic System -- 3.5.5 The Law of Supply and Demand -- 3.5.6 A Short-Term Economic Horizon -- 3.5.7 The Abundance of Resources -- 3.5.8 Attitude Toward Nature -- 3.5.8.1 Are Farmers Environmentalists? -- 3.5.9 The Tragedy of the Commons -- 3.5.10 Irrational Exuberance -- References -- Chapter 4: Energetic Services of Nature that Increase Agricultural Sustainability -- 4.1 Types of Value -- 4.2 Nutrient Recycling - A Market Value -- 4.2.1 The Service Rendered: Increasing the Efficiency of Nutrient Cycling -- 4.2.2 Source of the Service: Soil Organic Matter -- 4.2.3 The Community of Soil Organisms -- 4.2.3.1 Energy Flow Through the Soil Ecosystem -- Nutrients in the Soil Organic Matter -- 4.2.3.2 Why Food Webs Differ -- The Soil Community and Compost -- 4.2.4 How Is Nutrient Cycling Efficiency Increased by Soil Organic Matter?. , 4.2.4.1 Synchronization -- 4.2.4.2 Phosphorus Solubilization -- 4.2.4.3 Nitrogen Fixation -- 4.2.4.4 Nutrient Uptake by Mycorrhizae -- 4.2.4.5 Physical Properties of Soil -- 4.2.4.6 Increased Vigor of Plants -- 4.2.5 The Energetic and Economic Value of Soil Organic Matter -- 4.2.5.1 Value of Soil Organic Matter -- 4.2.6 Energy Subsidies Replaced by Soil Organic Matter -- 4.3 Pest Control - An Attributable Value -- 4.3.1 The Service Rendered - Controlling Insect Pests -- 4.3.2 Source of the Services -- 4.3.2.1 Beneficial Insects -- 4.3.2.2 Complexity and Diversity of Crop Systems -- 4.3.2.3 Natural Insecticides -- 4.3.3 The Energetic and Economic Value of Insect Pest Control -- 4.3.4 Energy Subsidies Replaced by Nature's Insect Control -- 4.4 Weed Control - An Attributable Value -- 4.4.1 The Service Rendered - Fighting Succession -- 4.4.2 Source of the Services -- 4.4.2.1 Allelopathy -- The Energetic and Economic Value of Weed Control -- 4.4.2.2 Fire -- Fire Research -- 4.5 Pollution Abatement - An Attributable Value -- 4.5.1 The Service Rendered: Prevention of Stream Pollution -- 4.5.1.1 Source of the Service: Bottomland Forests -- 4.6 Pollination - An Attributable Value -- 4.6.1 The Service Rendered - Fertilizing the Ovary of Plants -- 4.6.1.1 Source of the Service - Birds, Bees, Bats -- 4.7 Biodiversity - An Intangible Value -- 4.7.1 The Service Rendered - Increasing Sustainability -- 4.7.2 Source of the Service - Genetic Diversity -- 4.7.2.1 Selective Breeding and Reduction of the Genetic Pool -- 4.7.2.2 Insect Resistance and Genetic Variation -- The Evolutionary Race -- 4.7.2.3 Increasing Efficiency of Ecosystem Function -- Overyielding -- Facilitation and Mutualism -- 4.8 Soil Rehabilitation - An Intangible Value -- 4.8.1 The Service Rendered: Improving Structure of Georgia Red Clay -- 4.8.2 Source of the Service. , 4.9 Ecosystem Services in an Energy-Scarce Future -- References -- Chapter 5: Applied Tools and Practices for Sustainable Agriculture -- 5.1 Combating Soil Erosion -- 5.1.1 Cover Crops -- 5.1.2 Conservation Tillage -- 5.1.3 Contour Plowing -- 5.1.4 Hedge Rows -- 5.1.5 Wind Breaks -- 5.1.6 Kudzu ( Pueraria sp.) -- 5.1.7 Perennial Grains -- 5.2 Increasing Soil Fertility -- 5.2.1 Manuring -- 5.2.2 Composting -- 5.2.3 Other Organic Amendments -- 5.2.4 Liming -- 5.2.5 Microbial Priming -- 5.2.6 Crop Rotations -- 5.2.7 Tightening the Nutrient Cycle -- 5.3 Suppressing Weeds -- 5.3.1 Herbicides -- 5.3.2 Plastic Weed Barriers -- 5.3.3 Flaming -- 5.3.4 Soil Solarization (Sterilization) -- 5.4 Controlling Insect Pests -- 5.4.1 Crop Management -- 5.4.2 Beneficial Interactions -- 5.4.3 Natural Pesticides -- 5.4.3.1 Before You Use Pesticides -- 5.5 Increasing Resource Use Efficiency -- 5.5.1 Mixed Species Agriculture -- 5.5.2 Mixed Species Forest Plantations -- 5.5.3 Mixed Species Grazing -- 5.6 Improving Pastures -- 5.6.1 Intensive Grazing Management -- 5.6.2 Rotational Grazing -- 5.7 Increasing Efficiency of Irrigation Systems -- 5.8 Farmscaping -- 5.8.1 Farmscaping at Spring Valley Ecofarm -- 5.8.2 Working with Nature -- 5.9 Organic Agriculture -- 5.9.1 Why Do People Buy Organic? -- 5.9.2 Is It Sustainable? -- 5.9.3 Are High Yields the Answer? -- 5.10 Future Directions -- References -- Chapter 6: An Economic, Ecological, and Cultural Evaluation of Agriculture in the American South -- 6.1 The Invisible Hand of the Marketplace -- 6.2 Why Focus the South? -- 6.3 An Agricultural History of the South -- 6.3.1 The Cultural Context -- 6.3.2 The Colonial Period -- 6.3.2.1 Jamestown -- 6.3.2.2 The Migration Westward -- 6.3.2.3 The Coastal Plain -- 6.3.2.4 The Piedmont -- Piedmont Soils -- 6.3.2.5 The Mountains -- 6.3.3 Carolina and Georgia. , 6.3.3.1 The Rice Plantations -- 6.3.4 The Post-revolutionary War Period -- 6.3.4.1 Agricultural Decline -- 6.3.4.2 The Agricultural Revival: A Reprieve from the Downward Spiral -- Soil Amendments -- 6.3.5 King Cotton -- 6.3.5.1 Settlement of Central Georgia -- 6.3.5.2 The Movement Westward -- Slavery as a Subsidy -- 6.3.6 The Civil War -- 6.3.7 Reconstruction: 1865-1900 -- 6.3.7.1 Pharsalia -- 6.3.8 Southern Agriculture Since 1900 -- 6.3.8.1 Corn -- 6.3.8.2 Tobacco -- 6.3.8.3 Cotton -- 6.3.8.4 Legumes -- 6.3.8.5 Vegetable Crops -- 6.3.8.6 Fruit Trees -- 6.3.8.7 Timber Trees -- 6.3.8.8 Cattle -- 6.3.8.9 Poultry -- 6.3.8.10 Hogs -- 6.3.9 Agriculture in Georgia: 2012 -- 6.4 Southern Conservatism -- 6.5 An Economic Evaluation of Agriculture in the Old South -- 6.5.1 The Colonial Period -- 6.5.1.1 Tobacco -- 6.5.1.2 Subsistence Agriculture -- 6.5.1.3 Rice -- 6.5.2 Settlement of the Georgia Colony -- 6.5.2.1 Early Settlers -- 6.5.2.2 The Cotton Era -- 6.5.2.3 Alabama and Mississippi Territories -- 6.5.3 "How Well did the Invisible Hand Work in the Old South?" -- 6.6 An Economic Evaluation of Agriculture in the New South -- 6.6.1 Agricultural Crops -- 6.6.2 Fruit Tree Crops -- 6.6.3 Forest Products -- 6.7 How Well Is the Invisible Hand Working in the New South? -- 6.8 An Ecological Evaluation of Agriculture in the South -- 6.9 Maximum Power vs. The Invisible Hand (H.T. Odum vs. Adam Smith) -- 6.9.1 Verdict at the Frontier -- 6.9.2 Verdict Beyond the Frontier -- References -- Chapter 7: Case Studies of Contemporary, Sustainable Farms in the South -- 7.1 Sustainable Specialties -- 7.1.1 Free Ranging Livestock -- 7.1.1.1 White Oak Pastures, Bluffton, Georgia -- 7.1.1.2 Polyface Farm, Shenandoah Valley, Virginia -- 7.1.1.3 Grass Roots Farm, Walton County, Georgia -- 7.1.2 Heritage Breeds -- 7.1.2.1 Grove Creek Farm, Crawford Georgia. , 7.1.2.2 Broad River Pastures, Elberton, Georgia.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Conservation biology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (383 pages)
    Edition: 1st ed.
    ISBN: 9783030851866
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Abbreviations -- Part I: Theory -- To Understand Economics, Follow the Money -- To Understand Ecosystems, Follow the Energy -- Chapter 1: Two Views of Ecology, Evolution, and Conservation -- 1.1 Why I Wrote this Book -- 1.1.1 Dualities Still Impede Conservation Efforts -- 1.2 The Intergovernmental Science-Policy Platform of Biodiversity and Ecosystem Services (IPBES) -- 1.2.1 Targets for Conservation -- 1.3 Evolving Objectives -- 1.3.1 Literature Review -- 1.3.2 Updating Ecosystem Ecology -- References -- Chapter 2: What Can We Learn by Studying Ecosystems that We Can't Learn from Studying Populations? -- 2.1 The Predator-Prey Conundrum -- 2.2 The Serengeti Ecosystem -- 2.2.1 Evolution in the "Ecological Theater" -- 2.2.2 Predator-Prey Interactions Tell Only Part of the Story -- 2.2.3 Evolution in the "Thermodynamic Theater" -- 2.2.3.1 Ruminants -- 2.2.3.2 Adaptation of Ruminants in the Serengeti -- 2.2.3.3 Productivity in the Serengeti -- 2.2.3.4 Fitness Results from Synchronous Evolution -- 2.2.3.5 What Have We Learned? -- References -- Chapter 3: A Thermodynamic Definition of Ecosystems -- 3.1 Ecosystems in the Twentieth Century -- 3.1.1 Cycling of Strontium-90 -- 3.1.2 Cesium-137 in Food Chains -- 3.1.3 Recycling of Isotopes in Norwegian Sheep -- 3.2 Ecological Energetics -- 3.2.1 Is it Time to Bury the Ecosystem Concept? -- 3.2.2 A Thermodynamic Definition of Life -- 3.2.3 A Thermodynamic Definition of Ecosystems -- 3.2.4 The Phase Transition Between Order and Chaos -- References -- Chapter 4: Thermodynamic Characteristics of Ecosystems -- 4.1 Equilibrium -- 4.1.1 The Equilibrium Law -- 4.1.2 Thermodynamic Equilibrium -- 4.2 Open Thermodynamic Systems -- 4.2.1 Ecosystems Are Thermodynamically Open Non-Equilibrium Systems -- 4.2.2 Work Is Performed by Non-equilibrium Systems. , 4.2.3 Advantage of a Thermodynamically Open System -- 4.3 Ecosystems Are Entropic -- 4.4 Ecosystems Are Cybernetic -- 4.4.1 Cybernetic Systems -- 4.4.2 Economic Systems Are Cybernetic -- 4.4.3 The Ecosystem Feedback Function -- 4.4.4 Indirect vs. Direct Feedback -- 4.4.5 Deviation Dampening and Amplifying Feedback -- 4.4.6 Set Points -- 4.5 Ecosystems Are Autocatalytic -- 4.6 Ecosystems Have Boundaries -- 4.7 Ecosystems Are Hierarchical -- 4.7.1 Hierarchy in Physical Systems -- 4.7.2 Hierarchy in Ecological Systems -- 4.7.3 Common Currencies -- 4.7.4 Macro- and Micro-system Models -- 4.7.5 Why an Ecosystem Model that Includes Everything Is Not Possible -- 4.7.6 A Nested Marine Community -- 4.8 Ecosystems Are Deterministic -- 4.9 Ecosystems Are Information Rich -- 4.9.1 An Engineering Definition of Information -- 4.9.2 Information to Facilitate Exchange -- 4.9.3 High Energy Information -- 4.9.4 Low Energy Information -- 4.9.5 Information Theory -- 4.9.6 Genetic Information -- 4.10 Ecosystems Are Non-teleological -- 4.11 Criticisms of Ecosystem Models -- References -- Chapter 5: Ecosystem Control: A Top-Down View -- 5.1 Two Ways to Look at Systems -- 5.2 Composing and Decomposing Trophic Webs -- 5.2.1 Decomposers in Soil Organic Matter -- 5.2.2 Decomposers in Marshes and Mangroves -- 5.3 Control of Systems -- 5.3.1 Top-Down vs. Bottom-Up -- 5.3.2 Top-Down Exogenous Control -- 5.3.3 Exogenous Impacts and Stability -- 5.3.4 Top-Down Endogenous Control -- 5.4 Endogenous Control Through Nutrient Recycling -- 5.4.1 Autocatalysis -- 5.4.2 Control of Microbial Activity -- 5.4.3 Inhibition of Microbial Activity by Leaf Sclerophylly -- 5.4.4 Inhibition of Microbial Activity by Chemical Defenses -- 5.4.5 Inhibition of Microbial Activity by Ecological Stoichiometry -- 5.4.6 The Synchrony Principle -- 5.4.7 The Decay Law -- 5.4.8 Direct Nutrient Cycling. , 5.4.9 The Role of Animals -- 5.5 Marine Systems -- 5.5.1 Nutrient and Energy Recycling -- 5.5.2 Exogenous Control -- 5.6 Control in Lakes -- 5.7 Control in Managed Ecosystems -- References -- Chapter 6: Ecosystem Control: A Bottom-Up View -- 6.1 Species as Arbitrageurs of Energy -- 6.1.1 Relation Between Rate of Flow and Mass in Hydraulic Systems -- 6.1.2 Relation Between Population Biomass and Rate of Energy Flow -- 6.2 Equilibrium -- 6.2.1 Mechanisms of Adjustment -- 6.2.2 Adjustments and Climate Change -- 6.2.3 Bird Populations -- 6.2.4 Dis-equilibrium -- 6.3 Population Instability vs. Ecosystem Instability -- 6.4 Control by Interactions: Direct vs. Indirect -- 6.4.1 Indirect Interactions -- 6.5 Direct Interactions -- 6.5.1 Predator - Prey -- 6.5.2 Mutualisms -- 6.5.3 Competition -- 6.5.3.1 Competition Leads to Complementarity and Formation of Thermodynamic Niches -- 6.5.3.2 Competition in Terrestrial and Marine Systems -- 6.5.3.3 Ecosystem Competition -- 6.5.3.4 Nature, Red in Tooth and Claw -- 6.5.4 Decomposition -- 6.5.5 Parasitism and Disease -- 6.5.6 Commensalism and Amensalism -- 6.5.7 Persistence of Negative Interactions -- References -- Chapter 7: Ecosystem Stability -- 7.1 Background -- 7.2 A Thermodynamic Definition -- 7.2.1 Regime Shift -- 7.2.2 Metastability -- 7.2.3 Pulsed Stability -- 7.2.4 Resistance and Resilience -- 7.3 Species Richness and Functional Stability -- 7.4 Species Richness and Cultural Values -- 7.5 Keystone Species, and Population and Ecosystem Stability -- 7.5.1 Keystone Species in the Yellowstone Region of Wyoming -- References -- Chapter 8: Case Studies of Ecosystem Control and Stability -- 8.1 Walden -- 8.1.1 "Harmony in Nature" -- 8.1.2 Feedback Produces Nature's "Harmony" -- 8.1.3 Feedback Mechanisms -- 8.2 Perturbations in Amazonian Rain Forests -- 8.3 Top-Down Control. , 8.3.1 The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance -- 8.3.1.1 Nutrient Recycling -- 8.3.1.2 Feedback Control: Tree-fall Gaps -- 8.3.1.3 Feedback Control: Shifting Cultivation -- 8.3.1.4 Phosphorus Dynamics -- 8.3.1.5 Tropical Agriculture on Richer Soils -- 8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance -- 8.4 Bottom-Up Control -- 8.4.1 The El Verde Project -- 8.4.1.1 Perturbation = Ionizing Radiation -- 8.4.1.2 Conclusion -- 8.4.2 The Long-Term Ecological Research Project in Puerto Rico -- 8.4.2.1 Perturbation = Hurricanes -- 8.4.2.2 Conclusion -- 8.4.3 The Lago Guri Island Project -- 8.4.3.1 Perturbation = Elimination of Top Predators -- 8.4.4 The Biological Dynamics of Tropical Rainforest Fragments Project -- 8.4.4.1 Perturbation = Deforestation -- 8.4.4.2 Changes in Intact Forests -- 8.4.4.3 Species Response to Fragmentation -- 8.4.4.4 Conclusion -- 8.5 What Have Case Studies Taught Us About Stability of Tropical Ecosystems? -- 8.5.1 Tropical Ecosystems Are Stable -- 8.5.2 Tropical Ecosystems Are Unstable -- 8.5.3 Energy Flow in Tropical Savannas and Rain Forests -- 8.5.4 Insects in Tropical Ecosystems -- 8.6 Application of Lessons to Other Regions -- 8.6.1 Relevance to Temperate Zones -- 8.6.2 Relevance to Aquatic Ecosystems -- 8.6.3 The Experimental Lakes Project (Ecosystem Control of Species) -- 8.6.4 Lake Mendota Studies (Species Control of Ecosystems) -- 8.7 Case Studies as Tests of Thermodynamic Theory -- References -- Chapter 9: Entropy and Maximum Power -- 9.1 Entropy -- 9.2 Entropy in a Steel Bar -- 9.3 Thermodynamic Equilibrium -- 9.4 Entropic Gradients -- 9.5 Capturing and Storing Entropy -- 9.5.1 Evapotranspiration and Entropy Reduction -- 9.5.2 Life Is a Balance Between Storing and Releasing Entropy -- 9.5.2.1 Potential Entropy -- 9.5.2.2 Entropy and Life. , 9.5.3 The Law of Maximum Entropy Production -- 9.5.4 Energy for Metabolism as Well as Growth -- 9.5.5 Unassisted Entropy Capture Is a Unique Characteristic of Life -- 9.6 Entropy Storage by Ecosystems -- 9.6.1 What Causes Entropy to Be Stored? -- 9.6.2 Entropy Storage by Animals -- 9.7 Capturing Pressure -- 9.8 Entropy and Time -- 9.8.1 Time's Speed Regulator -- 9.8.2 Efficiency of Energy Transformations -- 9.8.3 Passage of Time for Cats -- 9.9 The Maximum Power Principle -- 9.10 Optimum Efficiencies for a Truck and Its Driver -- 9.11 Sustainability -- References -- Chapter 10: A Thermodynamic View of Succession -- 10.1 The Population View -- 10.2 The Thermodynamic View -- 10.2.1 Leaf Area Index and Succession -- 10.2.2 Power Output as a Function of Leaf Area Index -- 10.2.3 What Causes Changes in Leaf Area Index? -- 10.2.4 Maximum Entropy Production Principle -- 10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium -- 10.3 The Strategy of Ecosystem Development -- 10.3.1 A Problem with Odum's Strategy -- 10.3.2 Why Power Output Continues to Increase -- 10.4 Revised Definition of Maximum Power -- 10.4.1 Costs of Ecosystem Stabilization -- 10.4.2 Transactional Costs -- 10.5 Succession, Power Output, and Efficiency -- 10.5.1 Kleiber's Law -- 10.6 Are Ecosystems Spendthrifts? -- 10.7 Interactions Between Species Facilitate Increase in Power Output -- 10.7.1 Facilitation -- 10.7.1.1 Facilitation During Primary Succession -- 10.7.1.2 Facilitation During Secondary Succession -- 10.7.2 Tolerance -- 10.7.3 Inhibition -- 10.8 Intermediate Disturbance Hypothesis -- 10.9 Nutrient Use Efficiency During Succession -- 10.9.1 Succession Following Logging Versus Following Agriculture -- 10.10 Thermodynamic View of Succession: Implications for Resource Management -- References -- Chapter 11: Panarchy -- 11.1 The Universal Cycle of Systems. , 11.1.1 Panarchy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Ecology . ; Agriculture. ; Evolutionary biology. ; Thermodynamics. ; Conservation biology.
    Description / Table of Contents: C ontents -- Part 1. Theory -- To Understand Economics, Follow the Money: To Understand Ecosystems, Follow the Energy -- Two Views of Ecology, Evolution, and Conservation -- Why I Wrote this Book -- Dualities Still Impede Conservation Efforts -- The Intergovernmental Science-Policy Platform of Biodiversity -- Targets for Conservation -- Evolving Objectives -- Literature Review -- Updating Ecosystem Ecology -- References -- What Can We Learn by Studying Ecosystems that We Can’t Learn from Studying Populations? -- The Predator-Prey Conundrum -- The Serengeti Ecosystem -- Evolution in the “Ecological Theater” -- Predator-Prey Interactions Tell Only Part of the Story -- Evolution in the “Thermodynamic Theater” -- References -- A Thermodynamic Definition of Ecosystems -- Ecosystems in the 20th Century -- Cycling of Strontium-90 -- Cesium-137 in Food Chains -- Recycling of Isotopes in Norwegian Sheep -- Ecological Energetics -- Is it Time to Bury the Ecosystem Concept? -- A Thermodynamic Definition of Life -- A Thermodynamic Definition of Ecosystems -- The Phase Transition between Order and Chaos -- References -- Thermodynamic Characteristics of Ecosystems -- Equilibrium -- The Equilibrium Law -- Thermodynamic Equilibrium -- Open Thermodynamic Systems -- Ecosystems are Thermodynamically Open Non-Equilibrium Systems -- Work is Performed by Non-equilibrium Systems -- Advantage of a Thermodynamically Open System -- 4.3 Ecosystems are Entropic -- 4.4 Ecosystems are Cybernetic -- Cybernetic Systems -- Economic Systems are Cybernetic Ecosystems are Cybernetic -- The Ecosystem Feedback Function -- Indirect vs. Direct Feedback -- Deviation Dampening and Amplifying Feedback -- Set Points -- Ecosystems are Autocatalytic -- Ecosystems have Boundaries -- Ecosystems are Hierarchical -- Hierarchy in Physical Systems -- Hierarchy in Ecological Systems -- Common Currencies -- Macro-and Micro-System Models -- Why an Ecosystem Model that Includes Everything is not Possible -- A Nested Marine Community -- Ecosystems are Deterministic -- Ecosystems are Information Rich -- An Engineering Definition of Information -- Information to Facilitate Exchange -- High Energy Information -- Low Energy Information -- Information Theory -- Genetic Information -- Ecosystems are Non-Teleological -- Criticisms of Ecosystem Models -- References -- Ecosystem Control: A Top-Down View -- Two Ways to Look at Systems -- Composing and Decomposing Trophic Webs -- Decomposers in Soil Organic Matter -- Decomposers in Marshes and Mangroves -- Control of Systems -- Top-Down vs. Bottom-Up -- Top-Down Exogenous Control -- Exogenous Impacts and Stability -- Top-Down Endogenous Control -- Endogenous Control through Nutrient Recycling -- Autocatalysis -- Control of Microbial Activity -- Inhibition of Microbial Activity by Leaf Sclerophylly -- Inhibition of Microbial Activity Chemical Defenses -- Inhibition of Microbial Activity by Ecological Stoichiometry -- The Synchrony Principle -- The Decay Law -- Direct Nutrient Cycling -- The Role of Animals -- Indirect Interactions -- Marine Systems -- Nutrient and Energy Recycling -- Exogenous Control -- Control in Lakes -- Control in Managed Ecosystems -- References -- Ecosystem Control: A Bottom-Up View -- Species as Arbitrageurs of Energy -- Relation Between Rate of Flow and Mass in Hydraulic Systems -- Relation Between Population Biomass and Rate of Energy Flow -- Equilibrium -- Mechanisms of Adjustment -- Adjustments and Climate Change -- Bird Populations -- Dis-equilibrium -- Population Instability vs. Ecosystem Instability -- Control by Interactions: Direct vs. Indirect -- Indirect Interactions -- Direct Interactions -- Predator – Prey -- Mutualisms -- Competition -- Decomposition -- Parasitism and Disease -- Commensalism and Amensalism -- Persistence of Negative Interactions -- References -- Ecosystem Stability -- Background -- A Thermodynamic Definition -- Regime Shift -- Metastability -- Pulsed Stability -- Resistance and Resilience -- Species Richness and Functional Stability -- Species Richness and Cultural Values -- Keystone Species, and Population and Ecosystem Stability -- 7.5.1 Keystone Species in the Yellowstone region of Wyoming -- References -- 8. Case Studies of Ecosystem Control and Stability -- Walden -- “Harmony in Nature” -- Feedback Produces Nature’s “Harmony” -- Feedback Mechanisms -- Perturbations in Amazon Rain Forests -- Top-Down Control -- The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance -- 8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance -- Bottom-Up Control -- The El Verde Project -- The Long-Term Ecological Research Project in Puerto Rico -- The Lago Guri Island Project -- The Biological Dynamics of Tropical Rainforest Fragments Project -- What have Case Studies Taught us about Stability of Tropical Ecosystems? -- Tropical Ecosystems are Stable -- Tropical Ecosystems are Unstable -- Energy Flow in Tropical Savannas and Rain Forests -- Insects in Tropical Ecosystems -- Application of Lessons to Other Regions -- Relevance to Temperate Zones -- Relevance to Aquatic Ecosystems -- The Experimental Lakes Project (Ecosystem Control of Species) -- Lake Mendota Studies (Species Control of Ecosystems) -- 8.7 Case Studies as Tests of Thermodynamic Theory -- References -- Entropy and Maximum Power -- Entropy -- 9.2 Entropy in a Steel Bar -- Thermodynamic Equilibrium -- Entropic Gradients -- Capturing and Storing Entropy -- Evapotranspiration and Entropy Reduction -- Life is a Balance between Storing and Releasing Entropy -- The Law of Maximum Entropy Production -- Energy for Metabolism as well as Growth -- Unassisted Entropy Capture is a Unique Characteristic of Life.-9.6Entropy Storage by Ecosystems -- 9.6.1 What Causes Entropy to be Stored? -- 9.7 Capturing Pressure -- 9.8 Entropy and Time -- 9.8.1 Time’s Speed Regulator -- Efficiency of Energy Transformations -- Passage of Time for Cats -- 9.9The Maximum Power Principle.-9.10 Optimum Efficiencies for a Truck and its Driver.-9.11 Sustainability -- References -- A Thermodynamic View of Succession -- 10.1 The Population View -- 10.2 The Thermodynamic View -- 10.2.1 Leaf Area Index and Succession -- 10.2.2 Power Output as a Function of Leaf Area Index -- 10.2.3 What Causes Changes in Leaf Area Index? -- 10.2.4 Maximum Entropy Production Principle -- 10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium -- 10.2.6 Entropy Storage by Animals -- 10.3 The Strategy of Ecosystem Development -- A Problem with Odum’s Strategy -- Why Power Output Continues to Increase -- Revised Definition of Maximum Power -- Costs of Ecosystem Stabilization -- Transactional Costs -- Succession, Power Output, and Efficiency -- 10.5.1 Kleiber’s Law -- Are Ecosystems Spendthrifts? -- Interactions Between Species Facilitate Increase in Power Output -- Facilitation -- Tolerance -- Inhibition -- Intermediate Disturbance Hypothesis -- Nutrient Use Efficiency during Succession -- Succession Following Logging vs Following Agriculture -- 10.10 Thermodynamic View of Succession: Implications for Resource Management -- References -- Panarchy -- The Universal Cycle of Systems -- Panarchy -- Thermodynamic Interpretation of the Sacred Rules -- 11.2.1 Growth and Consolidation -- 11.2.2 Collapse -- Renewal -- Sub-systems -- Panarchy over 2 Billion Years of Evolution -- Consolidation, Bureaucracy and System Collapse -- Bureaucracy in Action (Case Studies) -- Case Study: Panarchy in the Georgia Piedmont -- Thermodynamic Interpretation -- References -- 12. A Thermodynamic View of Evolution -- 12.1 Life – A Physicist's View -- 12.1.1 Life is Produced by Capturing Entropy -- 12.1.2 The Origin of Life -- 12.2 Two Approaches to Evolution -- 12.2.1 The Eco-Evo-Devo View -- 12.2.2 The Thermodynamic View -- 12.2.3 Fitness -- 12.2.4 The “Goal” of Evolution -- 12.3 The Relationship between Species and Environment -- 12.3.1 Evolution’s “Theater” -- 12.3.2 Is Evolution Stochastic or Deterministic? -- 12.4 Ecosystem Evolution -- 12.4.1 Succession was the Clue -- 12.4.2 Ecosystems Moved away from Equilibrium -- 12.4.3 Thermodynamic Mechanisms -- 12.4.4 Biological Mechanisms -- 12.4.5 Ecosystem Fitness -- 12.4.6 Ecosystems Evolve One Step at a Time -- 12.5. The Origin of Ecosystems -- 12.5.1 Origin of Feedback Loops -- 12.5.2 Origin of Trophic Levels -- 12.5.3 Why are there Trophic Levels? -- 12.6 The “Goal” of Ecosystem Evolution -- 12.6.1 Conflicting Goals? -- 12.6.2 “Motivations” of Species -- 12.6.3 The Earth Ecosystem -- 12.6.4 Why is there Resistance to the Idea of Ecosystem Evolution? -- 12.6.5 Evolution of Economic Systems -- 12.7 A Thermodynamic Model of Ecosystem Evolution -- 12.7.1 Network Models -- 12.7.2 Increase in Complexity of Trophic Webs -- 12.7.3 Evolution of Trophic Webs -- 12.7.4 Life Moves Ashore -- 12.8 Biodiversity and the Five Great Extinctions -- 12.8.1 The Cretaceous-Tertiary (K-T) Boundary Extinction -- 12.8.2The Amazing Sust...
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXVI, 384 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9783030851866
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 6 (1982), S. 485-492 
    ISSN: 1432-1009
    Keywords: Land reclamation strategies ; Natural regeneration ; Plantation forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Biomass and productivity were compared in two plantations and in one stand of natural regeneration on similar sites in a premontane moist forest region of Puerto Rico. While initial growth rates of plantation species were higher, after four decades productivity of the natural regeneration plots was equal to or greater than productivity of the plantations. For the first 44 years, aboveground biomass of natural regeneration increased at an average annual rate of 3.8t·ha−1·yr−1, but the last year of the study it was 14.7t·ha−1. Biomass increment of a pine plantation averaged between 8 and 10.5t·ha−1·yr−1 except for one year when the rate was much lower, possibly because of hurricane damage. A tropical hardwood plantation averaged close to 4t·ha−1·yr−1 for 41 years. It is suggested that in countries where funds for land reclamation are limited, intensive plantations may not always be the best strategy. Natural regeneration or shelterbelt plantations may be suitable alternatives.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 19 (1989), S. 429-435 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract Jari plantation is the largest pulp growing operation in the humid tropics, and occupies about 1000 sqkm previously covered by tropical forest. A study of five sites at Jari in 1980 indicated declining soil fertility, and low productivity of pulpwood. Low pulp production at Jari was caused by several factors, one of which appeared to be low soil fertility. The sams sites were re-evaluated in 1987. There was no discernable trend in either nutrients or productivity since 1980. Although productivity and nutrient stocks may have stabilized, low profitability caused by low pulp production resulted in the sale of Jari in 1982, for a $ 720 million loss. Despite growth rates at Jari which were too low to produce a profit on original investment, another plantation is planned for the eastern Amazon which is 10 times the size of Jari.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...