GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1240-1247 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A discrepancy persists between field-reversed configuration experiments, which are generally stable, and theoretical predictions of instability. The common consensus has been that the stability is the result of finite Larmor radius (FLR) effects. An FLR analysis is presented that finds the self-consistent displacement functions and complex frequency. This is done using the linear gyroviscous model, a fluid-based representation of FLR that allows a wide range of equilibria and modes to be examined with modest computations. The conclusion is that FLR in static FRC fails to explain the observed stability. The cause of stability must lie elsewhere. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 931-934 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The marginal stability of a static plasma with finite-Larmor-radius (FLR) effects depends on a combination of the FLR effect and the ideal magnetohydrodynamic (MHD) potential energy. For the tilt mode in a field-reversed configuration (FRC) previous computations of these two factors led to a prediction of stability for S*≤(3−5)E where S* is the macroscale parameter (separatrix radius/ion skin depth) and E is the elongation (separatrix half length/separatrix radius). This prediction explained the observed stability of most experiments. However, recent computations of actual MHD eigenfunctions indicate that the MHD growth rate has a much weaker scaling with elongation than previously believed. As a consequence, most of the long-lived, stable FRC experiments lie in the region predicted to be unstable. It appears then that the stability of FRC experiments is not explained by FLR effects in a static equilibrium. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...