GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 379, No. 2195 ( 2021-04-19), p. 20190542-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 379, No. 2195 ( 2021-04-19), p. 20190542-
    Abstract: A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius–Clapeyron (CC) rate (6–7% K −1 ), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Geophysical Research Letters Vol. 49, No. 16 ( 2022-08-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 16 ( 2022-08-28)
    Abstract: Surface climate changes since the 1950s in West Antarctica are out of the range of internal variability The increase in greenhouse gas emissions and stratospheric ozone depletion are responsible for these changes The future changes over the 21st century will depend on both the greenhouse gas emissions and the ozone layer recovery
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 9, No. 3 ( 2019-3), p. 180-182
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 4 ( 2012-02-15), p. 1358-1358
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 4 ( 2012-02-15), p. 1358-1358
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 20 ( 2011-10-15), p. 5275-5291
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 20 ( 2011-10-15), p. 5275-5291
    Abstract: The detection of climate change signals in rather short satellite datasets is a challenging task in climate research and requires high-quality data with good error characterization. Global Navigation Satellite System (GNSS) radio occultation (RO) provides a novel record of high-quality measurements of atmospheric parameters of the upper-troposphere–lower-stratosphere (UTLS) region. Because of characteristics such as long-term stability, self calibration, and a very good height resolution, RO data are well suited to investigate atmospheric climate change. This study describes the signals of ENSO and the quasi-biennial oscillation (QBO) in the data and investigates whether the data already show evidence of a forced climate change signal, using an optimal-fingerprint technique. RO refractivity, geopotential height, and temperature within two trend periods (1995–2010 intermittently and 2001–10 continuously) are investigated. The data show that an emerging climate change signal consistent with the projections of three global climate models from the Coupled Model Intercomparison Project cycle 3 (CMIP3) archive is detected for geopotential height of pressure levels at a 90% confidence level both for the intermittent and continuous period, for the latter so far in a broad 50°S–50°N band only. Such UTLS geopotential height changes reflect an overall tropospheric warming. 90% confidence is not achieved for the temperature record when only large-scale aspects of the pattern are resolved. When resolving smaller-scale aspects, RO temperature trends appear stronger than GCM-projected trends, the difference stemming mainly from the tropical lower stratosphere, allowing for climate change detection at a 95% confidence level. Overall, an emerging trend signal is thus detected in the RO climate record, which is expected to increase further in significance as the record grows over the coming years. Small natural changes during the period suggest that the detected change is mainly caused by anthropogenic influence on climate.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 12, No. 8 ( 2019-8), p. 650-656
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 13 ( 2005-07-01), p. 2429-2440
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 13 ( 2005-07-01), p. 2429-2440
    Abstract: A Bayesian analysis of the evidence for human-induced climate change in global surface temperature observations is described. The analysis uses the standard optimal detection approach and explicitly incorporates prior knowledge about uncertainty and the influence of humans on the climate. This knowledge is expressed through prior distributions that are noncommittal on the climate change question. Evidence for detection and attribution is assessed probabilistically using clearly defined criteria. Detection requires that there is high likelihood that a given climate-model-simulated response to historical changes in greenhouse gas concentration and sulphate aerosol loading has been identified in observations. Attribution entails a more complex process that involves both the elimination of other plausible explanations of change and an assessment of the likelihood that the climate-model-simulated response to historical forcing changes is correct. The Bayesian formalism used in this study deals with this latter aspect of attribution in a more satisfactory way than the standard attribution consistency test. Very strong evidence is found to support the detection of an anthropogenic influence on the climate of the twentieth century. However, the evidence from the Bayesian attribution assessment is not as strong, possibly due to the limited length of the available observational record or sources of external forcing on the climate system that have not been accounted for in this study. It is estimated that strong evidence from a Bayesian attribution assessment using a relatively stringent attribution criterion may be available by 2020.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 9 ( 2020-05-01), p. 3487-3509
    Abstract: The sea surface temperature (SST) contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the intensity of the monsoon systems. This study examines the contributions of external forcing and unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 observations, and 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 1881 to 2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, but not natural, forcing is detected in the interhemispheric SST contrast, with the observed response larger than that of the model mean in ERSSTv5. The forced response consists of asymmetric NH–SH SST cooling from the mid-twentieth century to around 1980, followed by opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is marked by NH–SH SST maxima in the 1930s and mid-1960s, and a rapid NH–SH SST decrease around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast highlights the shift around 1970 as the most prominent from 1881 to 2012. Both NH and SH SST variability contributed to the shift, which appears not to be attributable to external forcings. Most models examined fail to capture such large-magnitude shifts in their control simulations, although some models with high interhemispheric SST variability are able to produce them. Large-magnitude shifts produced by the control simulations feature disparate spatial SST patterns, some of which are consistent with changes typically associated with the Atlantic meridional overturning circulation (AMOC).
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: WIREs Climate Change, Wiley, Vol. 2, No. 6 ( 2011-11), p. 851-870
    Abstract: Indices for climate variability and extremes have been used for a long time, often by assessing days with temperature or precipitation observations above or below specific physically‐based thresholds. While these indices provided insight into local conditions, few physically based thresholds have relevance in all parts of the world. Therefore, indices of extremes evolved over time and now often focus on relative thresholds that describe features in the tails of the distributions of meteorological variables. In order to help understand how extremes are changing globally, a subset of the wide range of possible indices is now being coordinated internationally which allows the results of studies from different parts of the world to fit together seamlessly. This paper reviews these as well as other indices of extremes and documents the obstacles to robustly calculating and analyzing indices and the methods developed to overcome these obstacles. Gridding indices are necessary in order to compare observations with climate model output. However, gridding indices from daily data are not always straightforward because averaging daily information from many stations tends to dampen gridded extremes. The paper describes recent progress in attribution of the changes in gridded indices of extremes that demonstrates human influence on the probability of extremes. The paper also describes model projections of the future and wraps up with a discussion of ongoing efforts to refine indices of extremes as they are being readied to contribute to the IPCC's Fifth Assessment Report. WIREs Clim Change 2011, 2:851–870. doi: 10.1002/wcc.147 This article is categorized under: Paleoclimates and Current Trends 〉 Modern Climate Change
    Type of Medium: Online Resource
    ISSN: 1757-7780 , 1757-7799
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2532966-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Geophysical Research Letters Vol. 48, No. 4 ( 2021-02-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 48, No. 4 ( 2021-02-28)
    Abstract: Orbital forcing induces a strong seasonal fingerprint in climate model simulations, which is distinct from any other forcings Over the last millennium, surface temperature trends simulated by climate models lag asymmetrically behind the insolation by around a month Differences between long‐term trends of proxy records could be caused by seasonal orbital forcing, which influences climate reconstructions
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...