GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 510 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 66 (1985), S. 1-5 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The effects of endophytic fungi (Tribe Balansiae, Clavicipitaceae, Ascomycetes) of grasses on an insect herbivore were studied by feeding paired groups of larvae of the fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) leaves from either infected or uninfected individuals. Perennial ryegrass infected by “the Lolium endophyte”, tall fescue infected by Epichloe typhina, dallisgrass infected by Myriogenospora atramentosa, Texas wintergrass infected by Atkinsonella hypoxylon, and sandbur infected by Balansia obtecta were utilized. The endophytes of ryegrass and fescue previously have been shown to be toxic to mammalian herbivores and to deter feeding of some insect herbivores. In this study we extend the antiherbivore properties of those endophytes to the fall armyworm and demonstrate that fungal endophytes in three other genera have similar antiherbivore properties. For most grasses, survival and weights of fall armyworm larvae fed infected leaves were significantly lower and larval duration was significantly longer compared to larvae fed uninfected leaves. Resistance to herbivores may provide a selective advantage to endophyte-infected grasses in natural populations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of insect behavior 1 (1988), S. 75-96 
    ISSN: 1572-8889
    Keywords: Trichoplusia ni ; Pseudoplusia includens ; Noctuidae ; Plusiinae ; reproductive isolation ; pheromone ; perception ; electrophysiology ; olfactory receptor neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The electrical activity of single olfactory receptor neurons in male soybean looper (SBL) Pseudoplusia includens(Walker) and cabbage looper (CL) Trihoplusia ni(Hübner) moths was evaluated in response to stimulation with fixed amounts of the individual components of their respective pheromone blends. In common with earlier observations in the CL, there are at least two classes of morphologically distinct pheromone sensitive sensilla on the antenna of male SBL, each of which contains two olfactory receptor neurons. In both species, one class of sensilla contains an olfactory receptor neuron sensitive to (Z)-7-dodecen-1-ol acetate (Z-7, 12:AC), the major component in each insect's blend, and a companion receptor neuron which is sensitive to (Z)-7-dodecen-1-ol (Z7,12: OH). In both species the second class of sensilla contains an olfactory receptor neuron which is sensitive to one of the minor components of the pheromone blend. (Z)-5-dodecen-1-ol acetate (Z-5,12:AC) is an effective stimulus in SBL, whereas (Z)-7-tetradecen-1-ol acetate (Z-7,14:AC) is an effective stimulus in CL. However, these two stimulatory compounds have been identified only in the female CL gland; neither has been found in the SBL gland. Thus, in contrast to the CL, which has receptor neurons which are responsive exclusively to conspecific pheromone components, the SBL has a class of receptor neurons which is responsive to a minor component of another species' pheromone blend. Field-trapping assays in which Z-5,12:AC is added to the SBL blend suggest that this single CL component is a powerful inhibitor of male SBL behavioral responses to conspecific pheromone blends. The difference observed in the specificity of the receptor neurons in this second class of sensilla are thus believed to play an integral role in the isolation processes that are maintained between these two species and may well account for the observed behavioral differences in their responses to heterospecific pheromone blends.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...