GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2023-01-13
    Description: Volcanism in the Eastern Azores Plateau occurs at large central volcanoes and along subaerial and submarine fissure zones, resulting from a mantle melting anomaly combined with transtensional stresses. Volcanic structures are aligned WNW‐ESE and NW‐SE, reflecting two tectonic stress fields that control the direction of lateral melt transport. Terceira Island is influenced by both stress fields, dividing the island into an eastern and western part. Several submarine volcanic ridges with variable orientations are located west of Santa Bárbara, the youngest central volcano on Terceira. Major, trace element and Sr‐Nd‐Pb‐Hf isotope compositions from submarine lavas and glasses, in part associated with the 1998-2001 Serreta Ridge eruption, vary between different lava suites, suggesting a formation from different mantle sources. Submarine lavas are more primitive than those from Santa Bárbara volcano, indicating that they are not laterally connected with the shallow magma reservoir located in 2‐ to 5‐km depth beneath the central volcano. Mineral thermobarometric data suggest that the older Serreta magmas were laterally transported at depths 〉5 km from Santa Bárbara predominantly in WNW direction. We propose that lithospheric extension controls magma transport from the central volcano to Serreta Ridge. The youngest Serreta lavas differ from Santa Bárbara and other submarine ridges in having less radiogenic Pb and higher Hf isotope ratios representing a new magma pulse ascending from the mantle. We conclude that lateral magma transport and the morphology of volcanic ridges are controlled by tectonic stresses in the lithosphere, whereas vertical melt transport is initiated by processes in the mantle.
    Keywords: Azores; Geochemistry; melt transport; tectonic stress; thermobarometry
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-02
    Keywords: Azores; Center for Marine Environmental Sciences; Comment; Event label; Geochemistry; Hafnium-176/Hafnium-177; Hafnium-176/Hafnium-177, standard deviation; International Generic Sample Number; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, standard deviation; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, standard deviation; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, standard deviation; M113/1; M113/1_08-1; M113/1_09-1; M113/1_10-1; M128; M128_749-1; M128_751-1; M128_753-1; M128_767-1; M128_769-1; M128_771-1; M128_772-1; M128_774-1; M128_775-1; M128_776-1; M128_777-1; M128_778-1; M128_779-1; M128_781-1; MARUM; melt transport; Meteor (1986); Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, standard deviation; Remote operated vehicle; ROV; Sample code/label; South Atlantic Ocean; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, standard deviation; tectonic stress; Television-Grab; thermobarometry; TVG
    Type: Dataset
    Format: text/tab-separated-values, 304 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-02
    Keywords: Aluminium oxide; Analytical method; Azores; AZT-03-121; AZT-03-39; AZT-03-77; Calcium oxide; Center for Marine Environmental Sciences; Chlorine; Chromium(III) oxide; Comment; Event label; Geochemistry; Iron oxide, FeO; Lithology/composition/facies; Location; M113/1; M113/1_09-1; M113/1_10-1; M128; M128_749-1; M128_751-1; M128_767-1; M128_769-1; M128_771-1; M128_772-1; M128_774-1; M128_777-1; M128_780-1; Magnesium; Magnesium oxide; Manganese oxide; MARUM; melt transport; Meteor (1986); Phosphorus pentoxide; Potassium oxide; Pressure; Remote operated vehicle; ROV; Sample code/label; Silicon dioxide; Sodium oxide; South Atlantic Ocean; Sulfur trioxide; tectonic stress; Television-Grab; Temperature, in rock/sediment; Terceira Island; thermobarometry; Titanium dioxide; Total; TVG; Unit
    Type: Dataset
    Format: text/tab-separated-values, 4609 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 126–147, doi:10.1002/2014GC005517.
    Description: Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300–3000 bars, corresponding to depths of 0.5–9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3–4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths 〉 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.
    Description: thanked for his help with sample preparation. The GRAVILUCK'06 and Bathyluck'08 cruises where financed by the French Ministry of Research. This work was supported by NSF grant OCE-0926422 to A.M.S., OCE-PRF-1226130 to V.D.W., OCE-1333492 to S.A.S., and EAR-09-48666 to M.D.B., and by ANR (France) Mothseim Project NT05-342213 to J.E.
    Description: 2015-07-20
    Keywords: Slow-spreading ridge ; Lucky Strike ; Melt inclusions ; Volatiles ; Melt lens
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Highlights • Coseismic displacement documented and measured in a submarine fault following a 2004 Mw 6.3 event. • Coseismic deformation of hanging wall with cracking and fissuring of seafloor sediments. • High-resolution mapping, photomosaicing, and 3D video-derived terrain models to constrain earthquake rupture at seafloor. Abstract Properly assessing the extent and magnitude of fault ruptures associated with large earthquakes is critical for understanding fault behavior and associated hazard. Submarine faults can trigger tsunamis, whose characteristics are defined by the geometry of seafloor displacement, studied primarily through indirect observations (e.g., seismic event parameters, seismic profiles, shipboard bathymetry, coring) rather than direct ones. Using deep-sea vehicles, we identify for the first time a marker of coseismic slip on a submarine fault plane along the Roseau Fault (Lesser Antilles), and measure its vertical displacement of ∼0.9 m in situ. We also map recent fissuring and faulting of sediments on the hangingwall, along ∼3 km of rupture in close proximity to the fault's base, and document the reactivation of erosion and sedimentation within and downslope of the scarp. These deformation structures were caused by the 2004 Mw 6.3 Les Saintes earthquake, which triggered a subsequent tsunami. Their characterization informs estimates of earthquake recurrence on this fault and provides new constraints on the geometry of fault rupture, which is both shorter and displays locally larger coseismic displacements than available model predictions that lack field constraints. This methodology of detailed field observations coupled with near-bottom geophysical surveying can be readily applied to numerous submarine fault systems, and should prove useful in evaluating seismic and tsunamigenic hazard in all geodynamic contexts.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: IODP Expedition 350 was the first to be drilled in the rear part of the Izu-Bonin, although several sites had been drilled in the arc axis to fore-arc region; the scientific objective was to understand the evolution of the Izu rear arc, by drilling a deep-water volcaniclastic section with a long temporal record (Site U1437). The Izu rear arc is dominated by a series of basaltic to dacitic seamount chains up to ~100-km long roughly perpendicular to the arc front. Dredge samples from these are geochemically distinct from arc front rocks, and drilling was undertaken to understand this arc asymmetry. Site U1437 lies in an ~20-km-wide basin between two rear arc seamount chains, ~90-km west of the arc front, and was drilled to 1804 m below the sea floor (mbsf) with excellent recovery. We expected to drill a volcaniclastic apron, but the section is much more mud-rich than expected (~60%), and the remaining fraction of the section is much finer-grained than predicted from its position within the Izu arc, composed half of ashes/tuffs, and half of lapilli tuffs of fine grain size (clasts 〈3 cm). Volcanic blocks (〉6.4 cm) are only sparsely scattered through the lowermost 25% of the section, and only one igneous unit was encountered, a rhyolite peperite intrusion at ~1390 mbsf. The lowest biostratigaphic datum is at 867 mbsf (~6.5 Ma), the lowest palaeomagnetic datum is at ~1300 mbsf (~9 Ma), and the rhyolite peperite at ~1390 mbsf has yielded a U–Pb zircon concordia intercept age of (13.6 + 1.6/−1.7) Ma. Both arc front and rear arc sources contributed to the fine-grained (distal) tephras of the upper 1320 m, but the coarse-grained (proximal) volcaniclastics in the lowest 25% of the section are geochemically similar to the arc front, suggesting arc asymmetry is not recorded in rocks older than ~13 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...