GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The ScanArray international collaborative program acquired broadband seismological data at 192 locations in the Baltic Shield during the period between 2012 and 2017. The main objective of the program is to provide seismological constraints on the structure of the lithospheric crust and mantle as well as the sublithospheric upper mantle. The new information will be applied to studies of how the lithospheric and deep structure affect observed fast topographic change and geological-tectonic evolution of the region. The program also provides new information on local seismicity, focal mechanisms, and seismic noise. The recordings are generally of very high quality and are used for analysis by various seismological methods, including P- and S-wave receiver functions for the crust and upper mantle, surface wave and ambient noise inversion for seismic velocity, body-wave P- and S-wave tomography for upper mantle velocity structure using ray and finite frequency methods, and shear-wave splitting measurements for obtaining bulk anisotropy of the upper and lowermost mantle. Here, we provide a short overview of the data acquisition and initial analysis of the new data, together with an example of integrated seismological results obtained by the project group along a representative ∼1800-km-long profile across most of the tectonic provinces in the Baltic Shield between Denmark and the North Cape. The first models support a subdivision of the Paleoproterozoic Svecofennian province into three domains, where the highest topography of the Scandes mountain range in Norway along the Atlantic Coast has developed solely in the southern and northern domains, whereas the topography is more subdued in the central domain.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-30
    Description: We studied the doping efficiency of Al and Ga dopants in (Mg,Zn)O alloys as a function of the growth temperature and post growth annealing times. High-temperature growth results in the highest structural quality and highest electron mobility; the doping efficiency is limited by the dopant's solubility. It was investigated in detail that a low growth temperature is needed to achieve free carrier densities above the solubility limit of the dopants. Samples grown at temperatures of 300   ° C and below have a free carrier density significantly above the solubility limit yielding the minimum resistivity of ρ min = 4.8 × 10 − 4     Ω   cm for Mg 0.05 Zn 0.95 O:Al thin films grown on glass at 300   ° C . Annealing of these samples reduces the free carrier density and the absorption edge to values similar to those of samples grown at high temperatures. The saturation of the free carrier density and the optical bandgap at their high temperature growth/annealing values is explained by the thermal creation of acceptor-like compensating defects in thermodynamic equilibrium.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...