GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3400-3400
    Kurzfassung: Although tyrosine kinase inhibitors (TKIs) with activity against ALK, ROS1, or TRKA-C have significantly improved clinical benefits in patients with diverse tumors harboring ALK, ROS1, or NTRKs rearrangements, drug resistance will be developed and subsequent therapy overcoming acquired resistance remains limited. The resistance is mainly caused by the adaptive mutations evolved in the structural region of ROS1/TRK/ALK kinases, especially solvent front substitutions such as ROS1 G2032R/TRKA G595R/ALK G1202R mutations. Next-generation TKIs targeting these mutations could potentially address this unmet medical need. Currently, several inhibitors, including TPX-0005, are under development in phase I/II clinical trials. Here, we report the finding of a novel small molecule, TY-2136b, which has been identified through a systemic approach against acquired ROS1/TRK/ALK mutations. Kinase assay results suggest that TY-2136b grants similar potency to TPX-0005 inhibiting ROS1 G2032R mutant activity (IC50 1.6 nM vs 2.4 nM ), confers significantly stronger potency than LOXO-101 inhibiting TRKA activity with G595R substitution (IC50 0.8 mM vs 460.1 nM ). The cell proliferation assay results with Ba/F3 cells suggest that TY-2136b is similar potent as TPX-0005 inhibiting cell proliferation of the Ba/F3 strain expressing mutant ROS1 bearing G2032R mutation, a major resistance mutation. TY-2136b also shows potent inhibition towards ROS1, ERK and AKT phosphorylation and downstream signaling in Ba/F3-CD74-ROS1-G2032R cells. Meanwhile, TY-2136b, TPX-0005, and TRK-selective second-generation LOXO-195 inhibitors had similar activity against TRKA G595R and TRKC G623R resistance mutations, but TY-2136b was better than TPX-0005 and LOXO-195 against TRKA G595R/F589L dual mutations in vitro. In vivo studies, TY-2136b showed dose-dependent anti-tumor effect at the dose of 5, 10, and 20 mg/kg, bid, in xenograft tumor models carrying ROS1 G2032R and TRKA G595R mutation, and was more effective than Crizotinib and LOXO-101 at testing dose, and showed better efficacy than TPX-0005 in higher dose. Next, in vivo activity of TY-2136b was examined with xenograft model of KM-12 expressing TPM3-NTRK1 fusion proteins. The results show that TY-2136b and TPX-0005 demonstrate more effectiveness than LOXO-195, and the animals tolerated TY-2136b better than TPX-0005. In the ALK-G1202R xenograft model, TY-2136b showed a significant anti-tumor effect in a certain dose-dependent manner. Taken together, our preclinical data demonstrate that TY-2136b can treat cancers caused by ROS1/TRK/ALK mutations and overcome drug resistance due to acquired solvent-front mutations. Currently, TY-2136b is under first-in-human clinical investigations in the US and China. * To Whom Correspondence should be addressed to: Jun Li, Chengshan Niu and Yusheng Wu Citation Format: Chengshan Niu, Apeng Liang, Yuge Dou, Kaige Ji, Meihua Li, Yanchao Zhao, Yan Zhang, Zhongwei Guo, Aishen Gong, Mingyu Jiang, Shaoqing Chen, Xiugui Chen, Jun Li, Yusheng Wu. TY-2136b, a next generation ROS1/TRK/ALK inhibitor, potently inhibits kinase and cell proliferation activities of tumor cells bearing drug-dependent acquired mutations [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3400.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2023
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Biology & Therapy, Informa UK Limited, Vol. 17, No. 2 ( 2016-02), p. 199-207
    Materialart: Online-Ressource
    ISSN: 1538-4047 , 1555-8576
    Sprache: Englisch
    Verlag: Informa UK Limited
    Publikationsdatum: 2016
    ZDB Id: 2088895-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Bioorganic & Medicinal Chemistry Letters, Elsevier BV, Vol. 24, No. 11 ( 2014-06), p. 2555-2559
    Materialart: Online-Ressource
    ISSN: 0960-894X
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2014
    ZDB Id: 1501505-1
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2023
    In:  Cancer Research Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5979-5979
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5979-5979
    Kurzfassung: The introduction of cyclin-dependent kinase (CDK) 4 and 6 dual inhibitors significantly improves the progression-free survival of patients with ER+/HER2- advanced or metastatic breast cancer. A large cohort of patients, however, eventually relapse to CDK4/6 therapy. To further empower the CDK therapy, simultaneous targeting of CDK2, CDK4, and CDK6 has been proposed as a new strategy based on the finding that abnormal activation of CDK2/CyclinE1 due to CCNE1 gene amplification is determined the key resistant mechanism to CDK4/6 inhibition. Here we present preclinical data of TY-0540, a novel CDK2/4/6 inhibitor for the treatment of breast cancer that is resistant to CDK4/6 inhibition. TY-0540 demonstrates high selectivity against CDK2, CDK4, and CDK6 compared to that of CDK1, CDK7, and CDK9 in a CDK panel screening. In vitro cell proliferation data shows that tumor cell lines OVCAR3 and HCC1806, both bearing CCNE1 amplification, are highly sensitive to TY-0540 treatment. To test the effectiveness of the clinical candidate compound on CDK4/6i resistance models, two Palbociclib resistant cell populations (T47D-R, HCC1428-R) were in-house generated via gradient exposure of the cells to Palbociclib. As expected, TY-0540 potently inhibits T47D-R and HCC1428-R cell proliferation whereas Palbociclib only confers mild interruption to cell proliferation. TY-0540 abolishes Rb phosphorylation at all its three phosphorylation sites and down-regulates E2F1, FOXM1, and c-Myc expression levels in the model cell line OVCAR3. Meanwhile, cell cycle analysis suggests the occurrence of strong G1 arrest at 24 hours after TY-0540 treatment. Consistent with the in vitro results, TY-0540 treatment confers extraordinary in vivo efficacy with a spectrum of tumor CDX mouse models and PDX models in mice. To examine the in vivo effectiveness of TY-0540 over resistance models to CDK4/6 inhibition, we developed Palbociclib-resistant MCF7 tumor model (Palbociclib-R-MCF7) through a combination of in vitro and in vivo evolution of the cells under the selection pressure of Palbociclib. In agreement with its mode of action, TY-0540 is able to suppress Palbociclib-R-MCF7 tumor growth and maintain tumor size at stable disease status. Taken together, we have identified a potent CDK2/4/6 inhibitor which may grant new therapeutic opportunities for cancer patients who relapse or refractory to CDK4/6 signaling blockage therapy. #Meihua Li and Chengshan Niu contributed equally to this work. *Jun Li, Meihua Li and Chengshan Niu are the correspondent authors. Citation Format: Meihua Li, Chengshan Niu, Mingtao Chen, Kaige Ji, Hui Xu, Shengli Dong, Yan Zhang, Qinguo Meng, Yuge Dou, Yijun Wang, Rui Wu, Yian Tu, Chao Zhou, Apeng Liang, Huan Wang, Rongzhen Ni, Aishen Gong, Hui Su, Mingyu Jiang, Feng Xing, Shaoqing Chen, Xiugui Chen, Jun Li, Yusheng Wu. TY-0540, a highly potent CDK2/4/6 inhibitor, attenuates acquired resistance against CDK4/6 inhibition [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5979.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2023
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3419-3419
    Kurzfassung: Proto-oncoprotein RET (rearranged during transfection) is a receptor tyrosine kinase and belongs to the cadherin superfamily. RET fusion proteins and gatekeeper mutations represent strong cancer drivers involved in the development of a variety of cancers. Although selective RET inhibitors selpercatinib (LOXO-292) and pralsetinib (BLU667) were recently marketed for patients with RET-dependent NSCLC and thyroid cancers, RET solvent front mutations G810R/S/C/V and other secondary mutations such as Y806C/N and V728A have been identified as mechanisms counting for acquired resistance to the two drugs and limits the applications of the kinase inhibitors. To provide novel RET inhibitors effective to a broader spectrum of RET fusions and mutations, we identified TY-1091 as a novel next-generation RET inhibitor through the in-house RET program and systemic screening of RET compound candidates. TY-1091 was characterized for its anti-tumor activity through in vitro and in vivo testing of a variety of RET-dependent tumor models including a panel of 17 engineered RET mutant Ba/F3 cell lines and 2 cancer cell models. The results show that TY-1091 inhibits wild type and major RET mutants (IC50, nM): RET G810S (9.5 nM), RET V804M/L/E (2.8-12.6 nM), and double mutants RET V804M/G810S (23.5 nM) and M918T/G810S (47.0 nM) through a biochemical screening against a panel of 17 engineered RET mutant Ba/F3 cell lines. Importantly, the inhibitory activity of TY-1091 is much higher than that of first-generation RET inhibitor Cabozantinib, and comparable to other second-generation compounds LOXO-292 and BLU-667. Consistent with its mode of action, TY-1091 grants extraordinary inhibition effects to tumor cell proliferation compared to its peer compounds LOXO-292 and BLU-667 (including TT (thyroid cancer, RET C634W) and LC2/ad (NSCLC, CCDC6-RET)), and the inhibition of the RET pathway activation, i.e., inhibition of RET phosphorylation (IC50 & lt; 1 nM), SHC phosphorylation (IC50 = 4.6 nM) and ERK phosphorylation (IC50 = 9.8 nM) in Ba/F3-KIF5B-RET cells further validated the above in vitro phenotype. The therapeutic potential of TY-1091 was then further validated through mouse pharmacology in that TY-1091 demonstrated remarkable anti-tumor efficacy in a variety of xenograft models including Ba/F3 KIF5B-RET (wt), Ba/F3 KIF5B-RET (V804L), TT (thyroid cancer, RET C634W), and LC2/ad (NSCLC, CCDC6-RET). Detailed data will be presented. In summary, TY-1091 is a highly potent, orally available, and safe small molecule inhibitor to pan-RET mutations in cancer, and may attenuate SFMs-mediated resistance to existing RET therapy. The IND clearance from the US FDA was received and Phase I clinical investigations of TY-1091 shall be launched in the US soon. *To Whom Correspondence should be addressed to: Jun Li, Chengshan Niu and Yusheng Wu Citation Format: Chengshan Niu, Maolin Zheng, Huan Wang, Kaige Ji, Meihua Li, Guohui Wang, Rongzhen Ni, Apeng Liang, Aishen Gong, Yazhen Zhang, Hui Su, Mingyu Jiang, Shaoqing Chen, Xiugui Chen, Jun Li, Yusheng Wu. TY-1091, a highly selective and potent second-generation RET inhibitor, demonstrates superior antitumor activity in multiple RET-mutant models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3419.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2023
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Bioorganic & Medicinal Chemistry Letters, Elsevier BV, Vol. 24, No. 1 ( 2014-01), p. 141-146
    Materialart: Online-Ressource
    ISSN: 0960-894X
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2014
    ZDB Id: 1501505-1
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Society for Pharmacology & Experimental Therapeutics (ASPET) ; 2010
    In:  Drug Metabolism and Disposition Vol. 38, No. 8 ( 2010-08), p. 1328-1340
    In: Drug Metabolism and Disposition, American Society for Pharmacology & Experimental Therapeutics (ASPET), Vol. 38, No. 8 ( 2010-08), p. 1328-1340
    Materialart: Online-Ressource
    ISSN: 0090-9556 , 1521-009X
    Sprache: Englisch
    Verlag: American Society for Pharmacology & Experimental Therapeutics (ASPET)
    Publikationsdatum: 2010
    ZDB Id: 1500213-5
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 4488-4488
    Kurzfassung: Epidermal growth factor receptor (EGFR) activating mutations represent major drivers to the development of non-small cell lung cancer (NSCLC). Among the oncogenic EGFR mutations, a significant cohort, counting for approximately 4-10% of the EGFR mutation spectrum, bear EGFR exon 20ins mutations. Meanwhile, approximately 2% of NSCLC patients bear hotspot mutations in HER2. Strikingly, over 90% of the HER2 mutations occurred in NSCLC are identified as exon 20ins mutations. Despite the successful launch of 1st, 2nd, and 3rd generation of EGFR inhibitory agents in the clinic that inactivate oncogenic EGFR signaling through targeting specific EGFR mutations, de novo or acquired, none of these standard-of-care therapies is specific to EGFR exon 20ins or HER2 exon 20ins. In addition, trastuzumab and EGFR-TKIs have limited effectiveness for NSCLC patients with HER2 exon 20ins mutation. TAK-788 (mobocertinib) and JNJ6372 (amivantamab-vmjw) are the FDA approvals for NSCLC driven by EGFR exon 20ins mutations. Only T-Dxd is used as a second-line treatment for NSCLC patients with HER2 mutation. Considering the large population of lung cancer and the fact that many patients are missed in diagnosis due to the heterogeneous characteristics of EGFR and Her2 exon 20ins, there are probably more than ten thousand lung cancer patients suffering the EGFR or Her2 exon 20ins mutations. There are urgent unmet medical needs to develop target therapeutics for EGFR and Her2 exon 20ins mutations. We discovered and developed TY-4028, which is a novel, potent, and orally available inhibitor targeting EGFR and Her2 exon 20ins mutations and is currently in the IND enabling stage. In EGFR-related tumor cells and genetically engineered Ba/F3 cell lines, TY-4028 showed similar or better antitumor effects than TAK-788, and better antitumor effects than DZD9008. The B/P ratio (brain tissue AUC0-last/plasma AUC0-last) of SD rats was 1.63 and 1.04 respectively after oral administration of TY-4028 in male and female SD rats, which suggested that TY-4028 had good potential to cross Blood Brain Barrier (BBB). Preclinical studies showed a good PK profile and manageable toxicity with TY-4028. TY-4028 has remarkable efficacy in mouse models of EGFR exon 20ins and HER2 exon 20ins. The data showed that all doses of TY-4028 had significant effects, and the tumors nearly demonstrated complete regression in the PDX LU0387 model and PC9 CDX model. At the same dose, the efficacy of TY-4028 was similar to that of TAK-788, while the tolerance of TY-4028 was better than that of TAK-788. At the same dose, the efficacy of TY-4028 was better than that of DZD9008. Taken together, the data demonstrated TY-4028 has great potential to meet the unmet medical needs for NSCLC patients with EGFR exon 20ins mutation or HER2 exon 20ins mutation. #Jun Li and Chengshan Niu contributed equally to this work. *They are the correspondent authors. Citation Format: Jun Li, Chengshan Niu, Zhongwei Guo, Huan Wang, Bailu Zheng, Yuge Dou, Apeng Liang, Kaige Ji, Shengli Dong, Meihua Li, Yanchao Zhao, Yazhen Zhang, Aishen Gong, Hao Liu, Xinmiao Hu, Hui Su, Mingyu Jiang, Shaoqing Chen, Xiugui Chen, Yusheng Wu. TY-4028: a novel, targeted therapy for non small-cell lung cancer with EGFR exon 20 or HER2 exon 20 insertion mutations. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4488.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2023
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 11_Supplement ( 2013-11-01), p. C254-C254
    Kurzfassung: The RAS/RAF/MEK/ERK pathway plays a central role in regulating cell proliferation, differentiation, and growth. The oncogenic mutation of BRAF (V600E) has been found in 8% of all human cancers, including more than 60% of melanoma, 45% of papillary thyroid cancer, 10% of colorectal cancers, and a small subset of ovarian, breast, lung cancers, and leukemia. Although BRAF-specific inhibitors such as Vemurafenib (PLX-4032) and Dabrafenib (GSK2118436) have been approved by FDA and several other BRAF inhibitors are at different stages of clinical development, they carry some liabilities and drug resistance rapidly developed. We have sought to identify and develop more potent BRAF (V600E) inhibitors with favorable pharmacological and safety profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAF (V600E) inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAF (V600E) kinase assay, EBI-907 is a highly potent inhibitor displaying a low single-digit nanomolar activity (IC50 = 4.9 nM), which is & gt;10-fold more potent than Vemurafenib (IC50 = 59 nM). EBI-907 also exhibits high potency in selectively inhibiting the proliferation of BRAF (V600E)-dependent cell lines (A375 and Colo205) and cellular Erk phosporylation, with superior activity to Vemurafenib. In multiple preclinical species (mice, rats, and dogs), EBI-907 exhibited an excellent oral bioavailability. In a BRAF (V600E)-dependent human Colo-205 tumor xenograft mouse model, EBI-907 caused a partial or complete tumor regression in a dose-dependent manner, with superior efficacy than Vemurafenib. In addition, we have also observed a broader kinase selectivity profile for EBI-907, displaying potent activity against a number of important oncogenic kinases including BRK, FGFR1, c-Kit, and PDGFRb. Preliminary toxicity studies in rodent models showed that EBI-907 was well tolerated and has a high safety margin. More importantly, EBI-907 showed a favorable pattern of drug-induced paradoxical activation of MAPK pathway, pointing to a possibility to “break” the inhibitor paradox. Finally, our results showed that combined use of EBI-907 and a MEK inhibitor completely abolished the paradoxical activation and overcame the drug resistance induced by BRAF inhibitor alone. Our findings not only present EBI-907 as a potent and promising BRAF inhibitor, but also point out a possibility to develop next generation targeted therapies to treat BRAF mutated cancers. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):C254. Citation Format: Jiayin Zhang, Dong Liu, Ru Shen, Yinfa Yan, Liuqing Yang, Minsheng Zhang, Guoqing Cao, Hu Cao, Beibei Fu, Aishen Gong, Biao Lu, Qiming Sun, Hong Wan, Pangke Yan, Lei Zhang, Lianshan Zhang, Jingsong Cao. Discovery of a novel and potent BRAF (V600E) inhibitor with a unique kinase targeting profile, EBI-907: Pharmacological characterization and potential to overcome drug resistance and paradoxical activation. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr C254.
    Materialart: Online-Ressource
    ISSN: 1535-7163 , 1538-8514
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2013
    ZDB Id: 2062135-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2023
    In:  Cancer Research Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5981-5981
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5981-5981
    Kurzfassung: Cell cycle dysregulation is a hallmark of cancer and represents tremendous opportunities for clinical blockage in cancer therapy. Currently, trilaciclib, palbociclib, ribociclib, and abemaciclib that bear dual specificities against CDK4 and CDK6 have been approved for clinical usage, and more CDK4/6 targeted agents are actively under clinical evaluations, among which, TY-302, a novel CDK4/6 inhibitor being developed by TYK Medicines, is under Phase II trial (NCT04433494). To further drive the potential of pharmacological regulation of cancer cell cycle, here we report a novel CDK7 kinase inhibitor TY-2699a towards clinical investigation in 2023. CDK7 is a kinase at the core of transcription and also functions in regulating cell cycle progression. CDK7 overexpression has been identified in a wide spectrum of tumor tissues including triple negative breast cancer (TNBC), ovarian carcinoma (OC), small cell lung cancer (SCLC), and pancreatic cancer, and has been correlated to poor prognosis in the diseases. These malignant pathological profiles make CDK7 a pivotal target for the development of novel cancer therapy. Several CDK7 targeted agents, such as SY-5609 and Samuraciclib (CT7001), are under development. TYK Medicines is also committed to provide novel yet safe CDK7 kinase inhibitor. Our data show that TY-2699a potently inhibits the kinase activity of CDK7 in the form of CDK7/Cyclin H/MAT1 kinase complex (IC50 9.5 nM) with high selectivity compared to that with CDK1/Cyclin A2, CDK2/Cyclin E1, CDK4/Cyclin D1, and CDK6/Cyclin D1. The screening of a panel of cancer cell lines revealed strong anti-cell proliferation activities of TY-2699a compared to that of the reference compound, and the phenotypic findings are underscored by TY-2699a-dependent cell cycle disruption. Our data demonstrate that TY-2699a triggers G2 cell cycle arrest, and induces apoptosis in tested cancer cells (HCC70, and MDA-MB-468), but not in hTERT-immortalized normal cell (RPE-hTERT). In vivo studies show that TY-2699a confers significant efficacies in tested CDX mouse models of HCC70 (TNBC), OVCAR3 (OC), and MV-4-11(AML) in a dose-dependent manner. To further validate the anti-tumor activity of the agent, BR5010, a TNBC PDX model was employed to assess the response to TY-2699a treatment. Our data show that the efficacy of TY-2699a at 3 mg/kg, bid × 21 days was similar to that of the reference compound CT7001 at 100 mg/kg, qd × 21 days, and the efficacy of TY-2699a at 6 mg/kg, bid × 21 days was significantly better than that of CT7001 at 100 mg/kg, qd × 21 days in BR5010 mouse model. In summary, we report that TY-2699a is a highly selective and potent CDK7 kinase inhibitor with an acceptable toxicity profile within the therapeutic window. TY-2699a is planned to be advanced for clinical evaluation in 2023. # Shengli Dong and Apeng Liang contributed equally to this work. * Jun Li, Shengli Dong and Apeng Liang are the correspondent authors. Citation Format: Shengli Dong, Apeng Liang, Jian Zhu, Huan Wang, Meihua Li, Kai Wang, Rongzhen Ni, Haoyun Li, Yundi Cao, Linglin Xiao, Hongqiang Li, Yian Tu, Chao Zhou, Aishen Gong, Shuyi Xu, Hui Su, Chengshan Niu, Mingyu Jiang, Feng Xing, Xiugui Chen, Shaoqing Chen, Jun Li, Yusheng Wu. TY-2699a is a highly potent CDK7 inhibitor to abolish dysfunctional tumor cell cycle for clinical development. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5981.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2023
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...