GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Singapore :Springer Singapore Pte. Limited,
    Schlagwort(e): Agricultural microbiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (493 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811519024
    Serie: Rhizosphere Biology Series
    DDC: 579
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- About the Editors -- 1: High Altitude Agro-ecosystems: Challenges and Opportunities -- 1.1 Introduction -- 1.1.1 Characteristics of High Altitude -- 1.1.2 Farming System in High Altitude -- 1.1.3 Prominent Agro-ecosystem -- 1.1.4 Challenges and Opportunities -- 1.1.4.1 Soil Health -- 1.1.4.2 Soil-Water Interaction (SWI) -- 1.1.5 Small Landholding -- 1.1.6 Tools and Farming Implements -- 1.1.7 Mountain Agriculture and Climate Change -- 1.2 Opportunities in Hill Farming -- 1.2.1 Ecological Niche Area of Cultivation -- Box 1.1: Oak Tasar Silk -- Box 1.2: Chilling Requirement in Apple cultivation -- 1.2.2 Organic Farming Practices in Hill -- 1.2.2.1 Challenges in Organic Farming Practices in Hill -- 1.3 Conclusions -- References -- 2: An Overview of Indian Agriculture with Focus on Challenges and Opportunities in North East -- 2.1 Evolution of Agriculture in India -- 2.2 Importance of Agriculture for India -- 2.3 Current Challenges in Indian Agriculture -- 2.4 North Eastern States of India: An introduction -- 2.4.1 Arunachal Pradesh -- 2.4.2 Assam -- 2.4.3 Manipur -- 2.4.4 Meghalaya -- 2.4.5 Mizoram -- 2.4.6 Nagaland -- 2.4.7 Sikkim -- 2.4.8 Tripura -- 2.5 Hill Agriculture of North East India: Prevailing Scenario and Challenges -- 2.6 Opportunities and Initiatives -- 2.6.1 Enhancement in Agricultural Productivity of North East -- 2.6.2 Increases in Crop Intensity and Diversification -- 2.6.3 Development of North East as Organic Hub -- 2.6.4 Establishment of Markets -- 2.6.5 Allied Sector Development -- References -- 3: Sari System: A Traditional Cropping Pattern of the Uttarakhand Himalaya -- 3.1 Introduction -- 3.2 Sari System -- 3.2.1 Rabi Season (Wheat Cropping) -- 3.2.1.1 Field Preparation -- 3.2.1.2 Ploughing -- 3.2.1.3 Roguing and Weeding -- 3.2.1.4 Harvesting of Crop. , 3.2.2 Kharif Season (Finger Millet Cropping) -- 3.2.2.1 Field Preparation -- 3.2.2.2 Ploughing -- 3.2.2.3 Roguing and Weeding -- 3.2.2.4 Harvesting of Crop -- 3.2.3 Kharif Season (Rice Cropping) -- 3.2.3.1 Field Preparation -- 3.2.3.2 Ploughing -- 3.2.3.3 Roguing and Weeding -- 3.2.3.4 Harvesting of Crop -- 3.2.4 The Rainy Season (Zaid Season) -- 3.3 Sari System and Diversity of Agricultural Crops -- 3.4 Crop Diversity and Economic Sustainability -- 3.5 Threats to the Sari System -- 3.6 Proposed Plans for Improvement -- 3.7 Conclusion -- References -- 4: Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes -- 4.1 Introduction -- 4.2 Abiotic/Climatic Factors -- 4.2.1 Temperature -- 4.2.1.1 Disadvantages of Temperature in Soil Ecosystem and Agricultural Productivity -- 4.2.2 Wind Profile -- 4.2.2.1 Advantages of Wind in High Altitudinal Agriculture -- 4.2.3 Air Moisture Content -- 4.2.3.1 Disadvantages of Moisture Content in Soil Ecosystem and Agricultural Productivity -- 4.2.4 Radiation -- 4.2.5 Precipitation in Higher Altitudes -- 4.2.6 Impact on Soil Ecosystem -- 4.2.7 Impact on Agriculture -- 4.3 Physiographic Effects on Soil and Agriculture -- 4.4 Soil Nutrient -- 4.5 Soil Fauna -- 4.5.1 Earthworms -- 4.5.2 Formicidae (Ants) -- 4.5.3 Termitidae (Termites) -- 4.6 Soil Flora -- 4.7 Soil Microbes -- 4.7.1 Bacteria -- 4.7.2 Fungi -- 4.7.3 Algae -- 4.7.4 Nematodes -- 4.8 Conclusion -- References -- 5: Traditional Farming Systems and Agro-biodiversity in Eastern Himalayan Region of India -- 5.1 Introduction -- 5.2 Traditional Farming Systems and Agro-biodiversity -- 5.2.1 Alder-Based Jhum Cultivation in Khonoma Village, Nagaland -- 5.2.2 Zabo Rice Cultivation System in Kikruma Village, Phek District, Nagaland -- 5.2.3 Tree-Based Cultivation in Konyak Village, Mon District, Nagaland. , 5.2.4 Apatani Fish-Cum-Paddy Cultivation in Ziro Valley, Arunachal Pradesh -- 5.2.5 Jhum and Bun (Terrace) Farming in Meghalaya -- 5.2.6 Rice-Based Farming System in Tripura -- 5.2.7 Organic Agriculture and Terrace Paddy Cultivation in Sikkim -- 5.3 Microbial Interventions in Jhum Farming Sector of North East India -- 5.4 Conclusion and Opinion -- References -- 6: Indigenous Agricultural Practices: A Supreme Key to Maintaining Biodiversity -- 6.1 Introduction -- 6.2 Indigenous Knowledge -- 6.3 The Role of Indigenous Knowledge -- 6.4 Indigenous Agricultural Practices in India -- 6.4.1 Meghalaya -- 6.4.2 Uttar Pradesh -- 6.4.3 Kashmir -- 6.4.4 Jharkhand -- 6.4.5 Himachal Pradesh -- 6.4.6 Chhattisgarh -- 6.5 Indigenous Systems in Agriculture -- 6.5.1 Organic Agriculture -- 6.5.2 Multiple Cropping or Mixed Cropping -- 6.5.3 Crop Rotation -- 6.5.4 Maintenance of Crops -- 6.5.5 Fallowing -- 6.6 Indigenous Agricultural Practices in Relation to Biodiversity Conservation -- 6.7 Conclusion -- References -- 7: Management of Biotic and Abiotic Stress Affecting Agricultural Productivity Using Beneficial Microorganisms Isolated from H... -- 7.1 Introduction -- 7.2 Biological Control of Plant Diseases at High Altitude -- 7.2.1 Biocompatibility with Other Soil Activity -- 7.2.2 Recent Trends in the Strain Improvements -- 7.2.3 Commercialization of Biological Control Agents -- 7.3 Abiotic Stress -- 7.3.1 Impact of Abiotic Stress on Plants -- 7.3.2 Plant-Microbe Interactions for Alleviating Abiotic Stress -- 7.4 Cross-Protection Against Abiotic and Biotic Stress -- 7.5 Conclusion -- References -- 8: Microbial Diversity in North Western Himalayan Agroecosystems: Functions and Applications -- 8.1 Introduction -- 8.2 Ecosystems in North Western Himalayas: Structure and Diversity -- 8.2.1 The Cold Deserts -- 8.2.2 Hot Springs -- 8.2.3 The Forest Ecosystems. , 8.2.4 Alpine Meadows -- 8.2.5 The Wetlands -- 8.2.6 Agroecosystems -- 8.3 Constraints of Hill Agroecosystem -- 8.3.1 Climate Change -- 8.3.2 Natural Disasters -- 8.3.3 Nutrient Imbalance and Soil Organic Carbon Losses -- 8.3.4 Anthropogenic Activities -- 8.3.5 Biological Constraints -- 8.3.6 Indigenous Farming Practices in North Western Himalayas -- 8.4 Microbial Diversity in Cold Deserts -- 8.4.1 Bacteria -- 8.4.2 Cyanobacteria -- 8.5 Bacterial Diversity in Sub-Glacial Lakes -- 8.6 Hot Spring Diversity -- 8.7 Microbial Diversity in Forest Ecosystem -- 8.7.1 Bacterial Diversity -- 8.7.2 Mushroom Diversity in Forest Ecosystem -- 8.8 Microbial Diversity in Alpine Meadows -- 8.9 Plant Growth-Promoting Bacteria in Himalayan Agroecosystems -- 8.10 Conclusion -- References -- 9: Biodiversity of Microbial Community: Association with Sustainable Hill Agroecosystems -- 9.1 Introduction -- 9.2 Soil Health for Sustainable Agroecosystem -- 9.2.1 Soil Biota -- 9.2.2 Nutrient Cycling Associated to Microbial Community -- 9.2.3 Soil Health Management -- 9.3 Microbial Biodiversity of Mountains/Hills -- 9.3.1 Bacterial Community -- 9.3.2 Archaeal Community -- 9.3.3 Eukaryotic Community -- 9.3.4 Metabolic and Genetic Diversity -- 9.4 Hill Agroecosystem -- 9.4.1 Traditional Hill Agroecosystem -- 9.5 Factors Affecting Hill Agroecosystem -- 9.5.1 Temperature -- 9.5.2 Climate Change -- 9.5.3 Farming Technique -- 9.6 Conclusion -- 9.7 Future Prospects and Recommendation -- References -- 10: Soil Microbiota: A Key Bioagent for Revitalization of Soil Health in Hilly Regions -- 10.1 Introduction -- 10.2 Importance of Soil Nutrients -- 10.3 Factors Affecting Nutrient Status of Soil -- 10.3.1 Temperature and Altitude Gradient -- 10.3.2 Agricultural Practices -- 10.3.3 Soil Microbiota -- 10.4 Properties of Soil at Higher Altitude -- 10.5 Why Require Nutrient Management?. , 10.6 Strategies of Nutrient Management in Soil -- 10.6.1 Agronomical Approaches -- 10.6.2 Use of Chemical Fertilizer -- 10.6.3 Role of Microorganisms in Reinstatement of Soil Nutrient -- 10.6.3.1 Microbial Mechanism for Nutrient Management -- 10.6.3.1.1 Nitrogen Fixation -- 10.6.3.1.2 Soil Organic Matter Management -- 10.6.3.1.3 Phosphate Mobilization -- 10.6.4 Integrated Nutrient Management (INM) -- 10.7 Conclusion -- 10.8 Future Prospects -- References -- 11: Characteristics of Microbial Community and Enzyme Activities in Higher Altitude Regions -- 11.1 Introduction -- 11.2 Study Sites and Their Climatic Conditions -- 11.2.1 Higher Altitude Locations Studied in India -- 11.2.2 Higher Altitude Locations Studied in China -- 11.2.3 Higher Altitude Locations Studied in Other Parts of the World -- 11.3 Microbial Diversity of High Altitude Regions -- 11.4 Characteristics of Microbial Enzymes Produced at Higher Altitude Sites -- 11.5 Factors Affecting the Microbial Community and Their Activities at High Altitude -- 11.6 Concluding Remarks and Future Perspectives -- References -- 12: Psychrotolerant Microbes: Characterization, Conservation, Strain Improvements, Mass Production, and Commercialization -- 12.1 Introduction -- 12.2 Plant Growth-Promoting (PGP) Traits of Psychrotrophs -- 12.3 Characterization -- 12.3.1 Cultivable/Culturable Methods -- 12.3.2 Non-cultivable/Unculturable Methods -- 12.3.2.1 Fluorescence Microscopy -- 12.3.2.2 Molecular Techniques -- 12.3.3 Techniques Used to Culture the ``Unculturables´´ -- 12.4 Conservation -- 12.4.1 In Situ Conservation -- 12.4.2 Ex Situ Conservation -- 12.4.3 In-Factory Conservation -- 12.5 Strain Improvements -- 12.5.1 Gene Cloning and Mutagenesis -- 12.5.2 Atmospheric and Room-Temperature Plasma (ARTP) -- 12.6 Mass Production -- 12.6.1 For Enzyme Production -- 12.6.2 For Bioinoculant Production. , 12.7 Commercialization.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Soil pollution. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book, written by worldwide experts, provides the necessary scientific background and addresses the challenging questions in order to better understand metal toxicity in various ecosystems and its management through bioremediation.
    Materialart: Online-Ressource
    Seiten: 1 online resource (522 pages)
    Ausgabe: 1st ed.
    ISBN: 9789400719149
    Serie: Environmental Pollution Series ; v.20
    DDC: 628.55
    Sprache: Englisch
    Anmerkung: Intro -- Biomanagement of Metal-Contaminated Soils -- Preface -- Contents -- Contributors -- Chapter 1: Heavy Metal Pollution: Source, Impact, and Remedies -- 1.1 Introduction -- 1.2 Sources of Heavy Metals -- 1.2.1 Natural Sources -- 1.2.2 Anthropogenic Sources -- 1.2.3 Activities Generating Heavy Metals -- 1.3 Nature of Heavy Metal Pollution -- 1.3.1 Heavy Metals and Air Pollution -- 1.3.2 Water Pollution -- 1.3.3 Soil Pollution -- 1.4 Impacts of Heavy Metals -- 1.4.1 Impact on the Environment -- 1.4.2 Heavy Metal Toxicity -- 1.4.3 Health Hazards -- 1.5 Abatement of Heavy Metals Pollution -- 1.5.1 Physicochemical Methods -- 1.5.2 Biochemical Methods -- 1.5.2.1 Heavy Metals and Microorganisms -- 1.5.2.2 Biosorption and Floatation -- 1.5.2.3 Biotransformation -- 1.5.2.4 Pollution Monitoring Biosensors -- 1.5.2.5 Bioremediation -- 1.5.3 Phytoremediation -- 1.6 Genetic Engineering: The Way Forward -- 1.7 Conclusion -- References -- Chapter 2: Metal-Plant Interactions: Toxicity and Tolerance -- 2.1 Introduction -- 2.2 Plant Structure -- 2.3 Metal Uptake and Transport -- 2.3.1 Metal Bioavailability -- 2.3.2 Root Uptake -- 2.3.3 Foliar Uptake -- 2.4 Metal Phytomtoxicity -- 2.4.1 Visible Symptoms -- 2.4.2 Physiological Changes -- 2.4.2.1 Inhibition of Germination -- 2.4.2.2 Decreased Growth -- 2.4.2.3 Membrane Damage -- 2.5 Inhibition of Physiological Processes -- 2.5.1 Oxidative Damage in Plants -- 2.5.2 Photosynthesis -- 2.5.3 Water Relations -- 2.5.4 Nutrient Deficiency -- 2.6 Metal Essentiality and Toxicity -- 2.7 Toxicity Sequence -- 2.8 Metal Tolerance Mechanisms -- 2.8.1 Metal Accumulation -- 2.8.2 Metal Detoxification -- 2.8.3 Antioxidant Response -- 2.9 Enhancing Metal Tolerance -- 2.9.1 Chelators -- 2.9.2 Phytohormones -- 2.9.3 Importance of Microorganisms in Metal Removal -- 2.10 Conclusion -- References. , Chapter 3: Bioremediation: New Approaches and Trends -- 3.1 Introduction -- 3.2 Remediation Technologies -- 3.2.1 Bioremediation -- 3.2.1.1 Ex-Situ Bioremediation -- 3.2.1.2 In-Situ Bioremediation -- 3.3 Phytoremediation -- 3.3.1 General Advantages of Phytoremediation -- 3.3.2 General Limitations of Phytoremediation -- 3.4 Phytoremediation Strategies -- 3.4.1 Phytoextraction -- 3.4.2 Rhizofiltration -- 3.4.3 Phytostabilization -- 3.4.4 Phytodegradation -- 3.4.5 Rhizodegradation -- 3.4.6 Phytovolatilization -- 3.5 Environmental Factors Affecting Phytoremediation -- 3.5.1 Soil Types and Organic Matter Contents -- 3.5.2 Soil Water/Moisture -- 3.5.3 Temperature -- 3.5.4 Light -- 3.5.5 Weathering Process -- 3.6 Techniques Used to Enhance Phytoremediation Process -- 3.6.1 Chelator-Induced Phytoextraction -- 3.6.2 Plant Growth Regulators -- 3.6.3 Plant Growth-Promoting Rhizobacteria -- 3.6.3.1 Remediation of Heavy Metals by PGPR -- 3.6.3.2 Remediation of Organic Contaminants by PGPR -- 3.7 Breakthroughs in Phytoremediation: Novel Transgenic Approaches -- 3.7.1 Metallothioneins, Phytochelatins, and Metal Chelators -- 3.7.2 Metal Transporters -- 3.7.3 Alteration of Metabolic Pathways -- 3.7.4 Alteration of Oxidative Stress Mechanisms -- 3.7.5 Alteration in Roots -- 3.7.6 Alteration in Biomass -- 3.8 Example of Genetically Engineered Plant -- 3.8.1 Mercury Detoxification Using Transgenic Plants -- 3.9 Conclusion -- References -- Chapter 4: Legume- Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal Polluted Soils -- 4.1 Introduction -- 4.2 The Legume- Rhizobium Symbiotic Interaction -- 4.2.1 Promotion of the Bacterial Infection -- 4.2.2 Bacterial Infection -- 4.2.3 Nodule Formation -- 4.3 The Legume- Rhizobium Symbiosis as a Tool for Bioremediation -- 4.3.1 The Microsymbiont and Heavy Metals -- 4.3.2 Examples of Heavy Metal Resistance in Rhizobia. , 4.3.2.1 Arsenic Resistance in Rhizobium Strains -- 4.3.2.2 Cadmium Resistance in Rhizobium Strains -- 4.3.2.3 Nickel Resistance Determinants in Rhizobium Strains -- 4.3.2.4 Resistance Against Chromium in Rhizobium -- 4.3.3 Nodulation Efficiency of Metal Resistant Rhizobia -- 4.3.4 Non-rhizobial Bacteria Nodulates Legumes Under Heavy Metal Stress -- 4.3.5 Legumes and Heavy Metals -- 4.3.5.1 Accumulation of Heavy Metals in Legume Plants -- 4.4 Effect of Heavy Metals on the Legume- Rhizobium Symbiotic Interaction -- 4.5 Application of Legume- Rhizobium Symbioses in Metal-contaminated Soils -- 4.6 Engineering Legume- Rhizobium Symbiosis for Improving Bioremediation -- 4.7 Conclusion -- References -- Chapter 5: Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils -- 5.1 Introduction -- 5.2 Arbuscular Mycorrhizal Fungi: An Overview -- 5.3 AM-Fungi-Assisted Phytoremediation -- 5.3.1 Occurrence of AM-Fungi in Heavy Metal Contaminated Soil -- 5.3.2 Does Mycorrhizal Plants Exhibit Enhanced Tolerance to Heavy Metals? -- 5.3.3 Contribution of AM-Fungi in Phytostabilization -- 5.3.4 Importance of AM-Fungi in Phytoextraction -- 5.4 Conclusion -- References -- Chapter 6: Research Advances in Bioremediation of Soils and Groundwater Using Plant-Based Systems: A Case for Enlarging and Updating Information and Knowledge in Environmental Pollution Management in Developing Countries -- 6.1 Introduction -- 6.2 Types, Sources, and Effects of Soil and Groundwater Pollutants -- 6.3 Phytoremediation: A Type of Plant-Assisted Bioremediation -- 6.4 Necessity for Sustained Bioremediation Research and Development -- 6.5 Conclusion -- References -- Chapter 7: The Bacterial Flora of the Nickel-Hyperaccumulator Plant Alyssum bertolonii -- 7.1 Botany and Life History of Alyssum bertolonii. , 7.2 Plant-Associated Bacteria : Which, Why, for What? -- 7.3 Soil and Rhizosphere Bacteria Involved in Metal Detoxification -- 7.3.1 Endophytic Bacteria -- 7.4 Conclusion and Perspectives -- References -- Chapter 8: Use of Biosurfactants in the Removal of Heavy Metal Ions from Soils -- 8.1 Introduction -- 8.2 Biosurfactants -- 8.2.1 Critical Micelle Concentration -- 8.2.2 Rhamnolipids -- 8.2.3 Surfactin -- 8.2.4 Saponin -- 8.2.5 Sophorolipids -- 8.2.6 Aescin -- 8.3 Heavy Metal Sorption on Soils -- 8.3.1 Comparison of Metal Sorption on Various Soils and/or Components -- 8.4 Heavy Metal Binding Mechanisms of Biosurfactants from Soil -- 8.4.1 Effect of pH -- 8.5 Biosurfactant Sorption onto Soils -- 8.6 Examples of Heavy Metal Removal from Soils Using Biosurfactants -- 8.7 Biosurfactant Foam Technologies -- 8.8 Role of Biosurfactants in Biofilm Formation and Use of Biofilms in Heavy Metal Bioremediation -- 8.9 Recent Use of Biosurfactants in Nanotechnology -- 8.10 Kinetic Modeling of Desorption -- 8.10.1 Sorption-Desorption Equilibrium -- 8.11 Conclusion and Future Prospect -- References -- Chapter 9: Mechanism of Metal Tolerance and Detoxification in Mycorrhizal Fungi -- 9.1 Introduction -- 9.2 Metal Tolerance/Detoxification in Mycorrhizal Fungi -- 9.2.1 Extracellular Mechanisms -- 9.2.1.1 Heavy Metal Chelation by Organic and/or Inorganic Ligands -- 9.2.2 Intracellular Mechanisms -- 9.2.2.1 Metal Complexation by Polyphosphate Granules -- 9.2.2.2 Vacuolar Compartmentalization by PCs and MTs -- 9.2.2.3 Transporter Proteins Involved in Metal Tolerance -- 9.2.2.4 Antioxidative Mechanisms to Combat Metal-Induced Oxidative Stress -- 9.3 Prospects of Genetic Engineering in Metal Remediation -- 9.4 Conclusion -- References -- Chapter 10: Metal Signaling in Plants: New Possibilities for Crop Management Under Cadmium-Contaminated Soils -- 10.1 Introduction. , 10.1.1 Stress Signal Transduction Mechanisms in Plants -- 10.1.2 Most Stress Signaling Mechanisms Share the Same Components -- 10.1.3 Metal Stress in Plants -- 10.1.4 Metal Signal Transduction in Plants - Possible Pathways -- 10.1.5 Possible Points in PC Signaling Regulation -- 10.2 Calcium Signaling in Cadmium Stress -- 10.2.1 The Role of Calcium -- 10.2.2 Calcium Influences Cadmium Uptake but Also PC Synthesis -- 10.3 Protein Phosphorylation Signaling in Metal Stress -- 10.3.1 The Role of Protein Phosphatases -- 10.3.2 Protein Phosphatase Inhibition Increases Cadmium Tolerance by Enhancing PC Synthesis -- 10.4 Conclusion -- References -- Chapter 11: Microbial Management of Cadmium and Arsenic Metal Contaminants in Soil -- 11.1 Introduction -- 11.2 Sources of Cadmium and Arsenic in Soil -- 11.2.1 Cadmium -- 11.2.2 Arsenic -- 11.3 Possible Impacts of Cadmium and Arsenic Metal Contaminants -- 11.3.1 Cadmium Toxicity -- 11.3.2 Arsenic Toxicity -- 11.4 Mechanism of Bacterial Resistance to Heavy Metals: An Overview -- 11.4.1 Bacterial Resistance to Cadmium -- 11.4.1.1 P-type ATPase -- 11.4.1.2 CBA Transporters -- 11.4.1.3 CDF Family Transporters -- 11.4.2 Bacterial Resistance to Arsenic -- 11.5 Influence of Microbes on Speciation and Mobility of Arsenic and Cadmium -- 11.6 Conclusion -- References -- Chapter 12: Phytotechnologies: Importance in Remediation of Heavy Metal-Contaminated Soils -- 12.1 Introduction -- 12.2 Phytoremediation: A Natural Way for Restoration of Polluted Soils -- 12.2.1 Advantages and Limitations of Phytotechnologies -- 12.2.2 Phytoextraction -- 12.2.2.1 Economics of Phytoextraction -- 12.2.3 Phytostabilization -- 12.2.3.1 Advantages -- 12.2.3.2 Disadvantages -- 12.3 Conclusion -- References -- Chapter 13: Chromium Pollution and Bioremediation: An Overview -- 13.1 Introduction. , 13.2 General Description, Discovery, and Occurrence of Chromium.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Microorganisms. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (435 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811626258
    DDC: 578.758
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- About the Editors -- 1: Cyanobacteria in Cold Ecosystem: Tolerance and Adaptation -- 1.1 Introduction -- 1.2 Significance of Cold Ecosystem -- 1.3 Ecology and Biogeochemistry of Cyanobacteria -- 1.3.1 Cryptic Niches -- 1.3.2 Hypoliths -- 1.3.3 Endoliths -- 1.3.4 Cryoconites -- 1.3.5 Aquatic Habitats -- 1.4 Ecophysiology of Polar Cyanobacteria and Functional Role of Arctic and Antarctic Cyanobacteria -- 1.5 Polar Region: Extreme Environmental Parameters and Stress Factors -- 1.6 Polar Cyanobacteria: Response to Various Stress Factors -- 1.6.1 General Mechanism of Adaptation -- 1.6.2 Stress Avoidance -- 1.6.3 Stress Tolerance -- 1.6.4 Dormant Cell Formation -- 1.6.5 Morphological Structures -- 1.6.6 Consortia -- 1.6.7 Low Temperature -- 1.6.8 Temperature Perception -- 1.6.9 Lipids -- 1.6.10 Proteins/Enzymes -- 1.6.11 Freeze/Melting Cycles -- 1.6.12 Antifreeze Proteins -- 1.6.13 Compatible Solutes and Cryoprotectants -- 1.6.14 Ice Nucleation Proteins -- 1.6.15 Dessication -- 1.6.16 Extracellular Envelopes -- 1.6.17 Water Stress Proteins -- 1.6.18 Salinity -- 1.6.19 Ionic Regulation -- 1.6.20 Osmotic Regulation -- 1.6.21 Irradiance (PAR) and Ultraviolet Radiation (UVR) -- 1.6.22 Photosynthesis and Photoinhibition at Low Temperature -- 1.6.23 Screening Compounds -- 1.6.24 Antioxidants -- 1.6.25 Survival Strategies: Insight from Metagenomics -- 1.6.26 Subzero Temperature Effect -- 1.7 Impact of Rise in Global Temperature on Polar Cyanobacteria -- 1.7.1 Nitrogen Cycling -- 1.7.2 Carbon Cycling -- 1.8 Conclusion -- References -- 2: Cold-Adapted Fungi: Evaluation and Comparison of Their Habitats, Molecular Adaptations and Industrial Applications -- 2.1 Introduction -- 2.2 Natural Habitats and Their Occurrence -- 2.3 Temperature Range -- 2.4 Cold Adaptations in Fungi: Definition -- 2.5 Cold-Adapted Fungi: A Background. , 2.6 Molecular Adaptations -- 2.7 The Arctic -- 2.8 The Antarctic -- 2.9 Nonpolar Regions -- 2.10 Arctic Fungi -- 2.10.1 Plant-Associated and Free-Living Fungi of Arctic Soils -- 2.10.2 Glacial Ice -- 2.10.3 Marine Fungi from the Arctic -- 2.11 Antarctic Fungi -- 2.11.1 Soils -- 2.11.2 Antarctic Permafrost -- 2.11.3 Endolithic Communities -- 2.12 Harmful Effects in Plants, Animals and Humans -- 2.13 Applications of Fungi in Industry -- 2.13.1 Cold-Active Enzymes -- 2.13.1.1 Proteases -- 2.13.1.2 Chitinases -- 2.13.1.3 Cellulases and Pectinases -- 2.13.1.4 Amylases -- 2.13.1.5 Xylanases -- 2.13.1.6 Lipolytic Enzymes -- 2.13.2 Pharmaceutical Products -- 2.13.3 Bioremediation -- 2.13.4 Pigment Production -- 2.14 Agriculture -- 2.15 Conclusion -- References -- 3: Microbial Life in Cold Regions of the Deep Sea -- 3.1 Introduction -- 3.2 Deep Sea as a Microbial Habitat -- 3.2.1 With Low Temperature -- 3.2.2 With High Pressure -- 3.3 Microbial Diversity in Deep Sea -- 3.4 Microbial Adaptations at Deep Sea -- 3.4.1 Low-Temperature Adaptations -- 3.4.1.1 Maintenance of Membrane Structure by the Generation of Unsaturated Fatty Acids -- 3.4.1.2 Cold-Shock Proteins (CSP) -- Functions of Cold-Shock Proteins -- 3.4.1.3 Viable but Non-Culturable Cell (VBNC) -- Mechanism of VBNC Formation -- 3.4.1.4 Antifreeze Proteins -- Mechanism of AFP -- 3.4.1.5 Adaptation Mechanism of Psychrophilic Enzymes -- 3.4.1.6 Piezophiles/Barophiles -- 3.4.2 Adaptation Mechanism of Piezophiles (High-Pressure Adaptations) -- 3.4.2.1 Membrane Lipid Adaptation -- 3.4.2.2 Outer Membrane Porins -- 3.4.2.3 Membrane Transport -- 3.4.2.4 Respiratory Chain -- 3.4.2.5 Motility Under High Pressure -- 3.4.2.6 Enzymes Adaptations Under High Pressure -- Low Stability -- High Compressibility -- High Absolute Activity -- High Relative Activity at High Pressures. , 3.5 Microbial Nutrition and Metabolism in Deep Sea -- 3.5.1 Chemistry of Deep Sea -- 3.5.2 Microbial Metabolism in Deep Sea -- 3.6 Conclusion -- References -- 4: Adaptation to Cold Environment: The Survival Strategy of Psychrophiles -- 4.1 Introduction -- 4.2 Ecological Adaptability of Psychrophiles -- 4.3 Environmental Adaptability of Psychrophiles -- 4.3.1 Membrane Fluidity -- 4.3.2 Cold-Shock and Heat-Shock Responses -- 4.3.3 Antifreeze Proteins (AFPs) -- 4.3.4 Cryoprotectants -- 4.3.5 Cold-Adapted Enzymes -- 4.3.6 Carotenoid Pigments -- 4.3.7 Protein Folding in Psychrophiles -- 4.3.7.1 Marine Environment -- 4.3.7.2 Non-marine Environment -- 4.3.7.3 Glacier Environment -- 4.4 Adaptation to Cold Habitat -- 4.4.1 Morphological Features -- 4.4.2 Molecular Aspects -- 4.4.3 Other Special Features -- 4.5 RandD Effort Innovation Technologies to Find Specific Adaptations -- 4.6 Conclusion -- References -- 5: Enzymatic Behaviour of Cold Adapted Microbes -- 5.1 Introduction -- 5.2 Psychrophillic Enzymes -- 5.2.1 Cold Adapted Activity -- 5.2.1.1 Inactivation and Unfolding -- 5.2.1.2 Active Site Architecture -- 5.2.1.3 Active Site Dynamics -- 5.2.1.4 Adaptive Drift and Adaptive Optimization of Substrate Affinity -- 5.2.1.5 Comparative Structural Analysis of Extremophiles -- 5.2.1.6 Composition of Amino Acids -- 5.2.1.7 Secondary Structural Elements -- 5.2.1.8 Comparative Proteome Analysis -- 5.2.1.9 Amino Acid Substitution Pattern -- 5.3 Kinetics and Energetics of Cold Activity -- 5.4 Conformational Stability -- 5.4.1 Structural Origin of Low Stability -- 5.5 Folding Funnel Model of Cold Active Enzymes -- 5.6 Psychrophillic Enzymes in Biotechnology -- 5.6.1 Heat Lability in Molecular Biology -- 5.6.2 Application of Cold Active Enzymes for Manufacturing Chemicals and Wastewater Treatment -- 5.6.3 Cold Active Enzymes Used in the Food Industry. , 5.7 Future Prospects -- 5.8 Conclusion -- References -- 6: An Overview of Survival Strategies of Psychrophiles and Their Applications -- 6.1 Introduction -- 6.2 Types of Extremophiles -- 6.2.1 Thermophiles -- 6.2.2 Psychrophiles -- 6.2.3 Acidophiles -- 6.2.4 Alkaliphiles -- 6.2.5 Halophiles -- 6.2.6 Piezophiles -- 6.3 Survival Strategies Adapted by Psychrophiles -- 6.3.1 Cell Membrane Fluidity -- 6.3.2 Antifreeze Proteins (AFPs) -- 6.3.3 Cold Shock Proteins -- 6.4 Applications of Cold Adapted Microbes -- 6.4.1 Psychrophilic Enzymes in Different Industries -- 6.4.2 Use of Psychrophilic Microorganisms in Bioremediation -- 6.4.3 Role of Psychrophiles in Medicine and Pharmaceuticals -- 6.4.4 Role of Psychrophiles in Domestic Purposes -- 6.4.5 Application of Psychrophiles in Textile-Based Industries -- 6.5 Psychrophiles Used in Fine Chemical Synthesis -- 6.6 Role of Psychrophiles in Agriculture -- 6.7 Conclusion and Future Prospectives -- References -- 7: Microbial Genes Responsible for Cold Adaptation -- 7.1 Introduction -- 7.2 Cold-Adapted Microorganisms -- 7.2.1 Diversity of Cold-Adapted Microorganisms -- 7.2.2 Strategies for Cold Adaptation -- 7.3 Cold Adaptation Genes -- 7.3.1 Cold Shock Response -- 7.3.1.1 Cold Shock Response in E. coli -- 7.3.1.2 Cold Shock Response in B. subtilis -- 7.3.1.3 Cold Shock Response in Psychrotrophs and Psychrophiles -- 7.3.2 Cold Acclimation Proteins -- 7.4 Genomic Studies -- 7.4.1 Psychrotrophic Microorganisms -- 7.4.2 Microbial Physiological Adaptations -- 7.4.3 Cell Membrane Modulation -- 7.4.4 Osmoprotection and Cryoprotection: Compatible Solutes -- 7.4.5 Freeze Protection -- 7.4.6 Extracellular Compounds -- 7.4.7 Transport and Diffusion -- 7.4.8 RNA/DNA Secondary Structure -- 7.4.9 Substrate Oxidation -- 7.5 Conclusion -- References -- 8: Survival Strategies in Cold-Adapted Microorganisms -- 8.1 Introductions. , 8.2 Survival Strategies of Cold-Adapted Microorganisms: Initial Studies -- 8.2.1 Physiological Adaptations Exhibited by Cold-Adapted Microorganisms -- 8.2.2 Structural Alterations of Proteins/Enzymes in Cold-Adapted Microorganisms -- 8.2.3 Alterations Ensuring Biomembrane Fluidity in Cold-Adapted Microorganism -- 8.2.4 Other Subtle Adaptations Exhibited by Cold-Adapted Microorganisms -- 8.2.5 Metagenomics- and Genomics-Based Studies of Cold-Adapted Microorganisms -- 8.3 Systems Biology Studies of Cold-Adapted Microorganisms -- 8.3.1 Comparative Genomic Studies of Cold-Adapted Microorganisms -- 8.3.2 Transcriptomics Studies of Cold-Adapted Microorganisms -- 8.3.3 Proteomics Studies of Cold-Adapted Microorganisms -- 8.4 Conclusion and Future Prospects -- References -- 9: Microbial Adaptations Under Low Temperature -- 9.1 Introduction -- 9.2 Microbial Adaptations Under Low Temperature -- 9.2.1 Sensing the Temperature -- 9.2.2 Structural Adaptation of Enzymes -- 9.2.3 Membrane Fluidity -- 9.2.4 Metabolism at Low Temperatures -- 9.2.5 Heat-Shock Proteins -- 9.2.6 Cold-Shock Proteins -- 9.2.7 Cryoprotectants -- 9.2.8 Antifreeze Proteins -- 9.3 Future Prospects -- References -- 10: Molecular Mechanisms of Cold-Adapted Microorganisms -- 10.1 Introduction -- 10.2 Cold-Adapted Enzymes -- 10.3 Modifications in Transcription and Translation -- 10.4 Role of Polyhydroxyalkanoates (PHA) -- 10.5 Cryoprotectant and Cold-Shock Proteins -- 10.6 Role of RNA Degradosome -- 10.7 Changes in Membrane Fluidity -- 10.8 Fatty Acid Desaturation -- 10.9 Branching of Fatty Acids -- 10.10 Cis- and Trans-Fatty Acids -- 10.11 Amino Acid: Composition and Length Variation -- 10.12 Modifications at Protein-Folding Stage -- 10.12.1 Translation -- 10.12.2 Folding Assistance -- 10.13 Conclusion -- References. , 11: Microbe-Mediated Plant Functional Traits and Stress Tolerance: The Multi-Omics Approaches.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Soil microbiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (639 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811629228
    DDC: 579.1757
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- About the Editors -- 1: Agriculturally Important Microbes: Challenges and Opportunities -- 1.1 Introduction -- 1.2 Azotobacter -- 1.2.1 Action Mechanism of Plant Growth-Promoting Rhizobacteria -- 1.2.2 Azotobacter as Biofertilizers and Biocontrol Agents -- 1.3 Serratia spp. -- 1.3.1 Action Mechanism as Plant Growth-Promoting Rhizobacteria -- 1.3.2 Serratia as Biocontrol Agents -- 1.3.3 Serratia in Abiotic Stress Tolerance -- 1.4 Bacillus spp -- 1.5 Pseudomonas -- 1.6 Challenges to the Use of Agriculturally Important Microbes -- 1.6.1 Screening of Microbes and Poor Shelf Life of Bioformulation -- 1.6.2 Lack of Field Reproducibly of PGPR Performance -- 1.6.3 Skewed Perception -- 1.6.4 Challenges in Product Commercialization -- 1.6.5 Challenges in Products Registration and Patent Filing -- 1.7 Future Aspects -- References -- 2: Agriculturally Important Microorganism: Understanding the Functionality and Mechanisms for Sustainable Farming -- 2.1 The Concept of Plant Microbiome and the Rhizobiome -- 2.2 Agriculturally Important Microorganisms (AIMs) -- 2.3 Diversity and Functionality of AIMs -- 2.3.1 Diversity and Interrelationship -- 2.3.2 Diversity and Functionality -- 2.3.2.1 Biocontrol Agents (BCA) -- 2.3.2.2 Plant Growth-Promoting Rhizobacteria (PGPR) -- 2.3.2.3 Plant Growth-Promoting Fungi (PGPF) -- 2.3.2.4 Arbuscular Mycorrhizal Fungi (AMF) -- 2.3.2.5 Endophytes -- 2.3.2.6 Actinomycetes -- 2.4 Mechanisms Involved in Plant and Soil Health Improvement -- 2.4.1 Direct Mechanism -- 2.4.1.1 Biological Fixation of the Atmospheric Nitrogen -- 2.4.1.2 Solubilization of Phosphates by Microorganisms -- 2.4.1.3 Production of Siderophores by Microorganisms -- 2.4.1.4 Production of Phytohormones -- 2.4.2 Indirect Mechanism -- 2.4.2.1 Induction of Resistance in Host Plants by AIMs. , 2.5 Molecular Signaling in the Rhizosphere and Beyond: The Cross Talk -- 2.5.1 Microbe Triggered Immunity -- 2.5.2 Microbial Signaling -- 2.6 Current and Future Challenges -- 2.7 Conclusion -- References -- 3: Microbial Diversity of Different Agroecosystems: Current Research and Future Challenges -- 3.1 Introduction -- 3.2 Microbial Diversity of Agroecosystems -- 3.2.1 Temporal and Spatial Distribution -- 3.2.2 Diversity in Different Agroecosystems -- 3.2.2.1 Jhum Agroecosystem -- 3.2.2.2 Microbial Diversity in Sundarbans -- 3.2.2.3 Agroecosystem of North Western Himalayas -- 3.2.2.4 Thar Agroecosystem -- 3.2.2.5 Coffee Shade Tree Agroecosystem -- 3.2.2.6 Apatani Wet Rice Agroecosystem -- 3.2.2.7 Agroecosystem of Leh Ladakh -- 3.2.2.8 Effect of Changing Environment on Microbial Diversity -- 3.3 Role of Microorganisms in Ecosystem Functioning -- 3.3.1 Nutrient Cycling -- 3.3.2 Soil Formation and Weathering -- 3.3.3 Waste Recycling -- 3.4 Effect of Changing Environment on Microbial Diversity -- 3.4.1 Soil Biodiversity, Resistance, and Resilience -- 3.4.2 Nitrogen Deposition -- 3.4.3 Elevated Carbon Concentration -- 3.5 Mitigation Strategies -- 3.5.1 Soil Biodiversity and Sustainable Agricultural Practices -- 3.5.2 Soil Biodiversity and Restoration Ecology -- 3.5.3 Agroecosystem Management with Core Microbiomes -- 3.6 Conclusion -- References -- 4: Soil Microbial Biomass asan Index of Soil Quality and Fertility in Different Land Use Systems of Northeast India -- 4.1 Introduction -- 4.2 Role of Soil Microbes in an Ecosystem -- 4.3 Soil Microbial Biomass -- 4.4 Land-Use Types of Northeast India -- 4.5 Soil Nutrient Status of Different Land-Use Types of Northeast India -- 4.6 Changes in Microbial Biomass C, N, and P Due to Land-Use Types -- 4.7 Microbial C:N:P Stoichiometry in Different Land-Use Types of Northeast India -- 4.7.1 Microbial C:N Ratio. , 4.7.2 Microbial C:P Ratio -- 4.7.3 Microbial N:P Ratio -- 4.8 Soil Nutrient Fractions in Microbial Biomass of Different Land Uses of Northeast India -- 4.9 Conclusion -- References -- 5: Microbes and Plant Mineral Nutrition -- 5.1 Introduction -- 5.2 An Overview of Soil Microorganisms for the Availability of Nutrients in Plants -- 5.3 Soil Microbes Induced Nitrogen Uptake by Plants -- 5.4 Soil Microbes Induced Phosphate Uptake by Plants -- 5.5 Soil Microbes Induced Potassium Uptake by Plants -- 5.6 Soil Microbes Mediated Micronutrient Acquisition in Plants -- 5.6.1 Iron -- 5.6.2 Zinc -- 5.7 Copper -- 5.7.1 Manganese -- 5.8 Future Perspectives and Challenges in Plant Microbe Based Agro-Inputs -- 5.9 Conclusion -- References -- 6: Drought Stress Alleviation in Plants by Soil Microbial Interactions -- 6.1 Introduction -- 6.2 Stresses, Soil Structure and Their Effect on Microbial Colonization -- 6.3 Microbes: As Protective Companion to Plants -- 6.3.1 Bacteria -- 6.3.2 AM Fungi -- 6.3.3 Actinomycetes -- 6.3.4 Virus -- 6.4 Drought Stress Management -- 6.4.1 Growth, Biomass, and Photosynthesis -- 6.4.2 Mineral Uptake and Mobilization -- 6.4.3 Redox Homeostasis and Membrane Stabilization -- 6.4.4 Osmolytes Regulation -- 6.4.5 Hormonal Regulation and Volatiles -- 6.5 Conclusion and Future Prospective -- References -- 7: Role of Nitrogen-Fixing Microorganisms for Plant and Soil Health -- 7.1 Introduction -- 7.2 Biological Nitrogen Fixation -- 7.2.1 Symbiotic Nitrogen Fixation -- 7.2.2 Invasion and Infection -- 7.2.2.1 Release of Flavonoids -- 7.2.2.2 Nod Factor -- 7.2.2.3 Nod Factor Perception -- 7.2.2.4 Responses to Nod Factor -- 7.2.2.5 Root Hair Curling -- 7.2.2.6 Nodule Organogenesis -- 7.2.3 Regulation of Nitrogen Fixation -- 7.2.4 Free Living and Associative Nitrogen Fixation -- 7.2.4.1 Free-Living Diazotrophs -- 7.2.4.1.1 Azotobacter vinelandii. , 7.2.4.1.2 Cyanobacteria -- 7.2.4.2 Associative Diazotrophs -- 7.3 Application in Management Practices -- 7.4 Conclusions -- References -- 8: Serendipita indica Mediated Drought and Heavy Metal Stress Tolerance in Plants -- 8.1 Introduction -- 8.2 Role of S. indica in Heavy Metal Stress Tolerance -- 8.3 Drought Stress Tolerance Mediated by S. indica -- 8.4 Conclusion -- References -- 9: Role of Rhizosphere and Endophytic Microbes in Alleviation of Biotic and Abiotic Stress in Plants -- 9.1 Introduction -- 9.2 Biotic and Abiotic Stress and Their Impacts on Crop Production -- 9.3 Diversity and Consortium of Rhizosphere and Endophytic Microbes -- 9.4 Environmental and Host Influence on the Rhizosphere and Endophytic Microbes -- 9.4.1 Environmental Effects -- 9.4.2 Effects of Agronomic Practices -- 9.4.3 Influence of Host Plants -- 9.5 Role of Rhizosphere and Endophytic Microbes in Agriculture -- 9.5.1 Plant Growth Promotion by Increasing Nutrient Availability -- 9.5.2 Plant Growth Promotion by Hormone Production -- 9.5.3 Defend Plants Against Biotic Stress -- 9.5.4 Increase Abiotic Stress Tolerance in Plants -- 9.6 Molecular Mechanisms of Stress Alleviation -- 9.6.1 Microbe-Mediated Induced Systemic Tolerance to Abiotic Stress -- 9.6.1.1 Amelioration of Nutrient Deficiency -- 9.6.1.2 Water, Temperature and Salinity Stress Tolerance -- 9.6.1.3 Tolerance of Stress Due to Heavy Metal and Herbicide Toxicity -- 9.6.2 Microbe-Mediated Induced Systemic Resistance to Biotic Stresses -- 9.6.3 Defence Mechanisms of Rhizosphere and Endophytic Microbes Against Biotic Stresses -- 9.6.4 Defence Against Phytopathogens -- 9.6.5 Defence Against Phytophagous Insects -- 9.7 Influence of Rhizosphere and Endophytic Microbes on Product Quality -- 9.8 Biotechnological Approaches for Enhancing the Effectiveness of Rhizosphere and Endophytic Microbes. , 9.9 Conclusion and Future Perspective -- References -- 10: Augmentation of Plant Salt Stress Tolerance by Microorganisms -- 10.1 Introduction -- 10.1.1 Impact of Soil Salinization on Plants -- 10.1.2 Plant Growth-Promoting Bacteria -- 10.1.3 Mycorrhizal and Endophytic Fungi -- 10.2 Molecular Mechanism Involved in Salt Tolerance -- 10.2.1 General Mechanisms of Augmenting Salt Tolerance in Plants -- 10.2.2 Specific Mechanisms in Regulating Salt Tolerance by Microorganisms -- 10.3 Microbial Stimulation of Salt Tolerance -- 10.3.1 Salt Tolerance by Bacteria -- 10.3.2 Salt Tolerance by Fungi -- 10.4 Combinatorial Benefits of PGPB and Mycorrhizal Fungi -- 10.5 Conclusion and Future Perspective -- References -- 11: Impact of Plant Exudates on Soil Microbiomes -- 11.1 Rhizosphere -- 11.2 Root Exudate -- 11.2.1 Rhizodeposition -- 11.2.2 Root Exudate and Organic Acid -- 11.3 Plant Interaction with Microbes -- 11.4 Root Exudate Impact -- References -- 12: Global Climate Change and Microbial Ecology: Current Scenario and Management -- 12.1 Introduction -- 12.2 Microbial Functions in the Environment -- 12.3 Applications in Agriculture -- 12.3.1 Nutrient Recycling -- 12.3.2 Sustaining Optimal Soil Structure for Agriculture -- 12.3.3 Mineralization and Humification -- 12.4 Role of Soil Enzymes in Decomposition of Organic Matter -- 12.4.1 Amylase -- 12.4.2 Arylsulfatase -- 12.4.3 β-Glucosidase -- 12.4.4 Cellulose -- 12.4.5 Chitinase -- 12.4.6 Dehydrogenase -- 12.4.7 Phosphatase -- 12.4.8 Proteases -- 12.5 Pollutants Mitigation -- 12.6 Bioremediation -- 12.7 Impact of Climate Change on the World´s Agriculture -- 12.7.1 Effects of Temperature -- 12.7.2 Moisture Fluctuations -- 12.7.3 Significance of Terrestrial and Aquatic Ecosystems -- 12.8 The Relevance of the Microbial World to the Problem -- 12.9 Role of Terrestrial Microbes. , 12.9.1 Production of Carbon Dioxide and Methane.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Agricultural microbiology. ; Sustainable agriculture. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (814 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323915960
    Serie: Developments in Applied Microbiology and Biotechnology Series
    DDC: 338.927
    Sprache: Englisch
    Anmerkung: Intro -- Trends of Applied Microbiology for Sustainable Economy -- Copyright -- Contents -- Contributors -- Preface -- 1 Trends of agricultural microbiology for sustainable crops production and economy: An introduction -- 1.1 Introduction -- 1.2 Role of beneficial microbiomes in plant growth promotion -- 1.2.1 Nitrogen fixation -- 1.2.2 Phosphorus solubilization -- 1.2.3 Potassium solubilization -- 1.2.4 Zinc solubilization -- 1.2.5 Siderophore production -- 1.2.6 Phytohormone production -- 1.3 Microbiomes for mitigation of biotic and abiotic stresses -- 1.3.1 Abiotic stress management -- 1.3.1.1 Salinity stress -- 1.3.1.2 Drought stress -- 1.3.1.3 High temperature stress -- 1.3.1.4 Low temperature -- 1.3.2 Biotic stress management -- 1.4 Beneficial microbiomes for sustainable crop production and protection -- 1.4.1 Biofertilizers -- 1.4.2 Biopesticides -- 1.5 Beneficial microbiomes in organic agriculture -- 1.6 Implication of beneficial microbes sustainable economic -- 1.7 Conclusion -- References -- 2 Phytobiome research: Recent trends and developments -- 2.1 Introduction -- 2.2 Plant-associated microbiomes -- 2.3 Plant-microbial interactions -- 2.4 Functional roles of phytobiome for sustainable agriculture -- 2.4.1 Role in nutrient mobilization -- 2.4.2 Effect on plant growth and health -- 2.4.3 Role in crop productivity -- 2.4.4 Enhanced plant defense mechanisms -- 2.5 Plant microbiome in the field of translation and commercialization -- 2.6 Conclusions -- References -- 3 An overview of microbial diversity under diverse ecological niches in northeast India -- 3.1 Introduction -- 3.2 Microbial diversity in different ecological niches -- 3.2.1 Bacterial diversity in hot water springs -- 3.2.2 Metagenome analysis of Phumdi (a floating island) in Loktak Lake, Manipur. , 3.2.3 Microbial diversity in forest ecosystem -- 3.2.4 Microbial diversity in jhum agroecosystem -- 3.2.5 Microbial diversity in agroecosystem -- 3.2.6 Contaminated habitats -- 3.3 Northeast microbial database (NEMiD) -- 3.4 Conclusion and future prospects -- References -- 4 Microbial consortium and crop improvement: Advantages and limitations -- 4.1 Introduction -- 4.2 Microbial consortia -- 4.3 Plant microbiota existing above the ground -- 4.4 Managed microbial consortia -- 4.4.1 Synthetic consortia -- 4.5 Plant growth-promoting microorganisms -- 4.6 Microbial interactions within consortium -- 4.7 Stimulation of plant growth under stressed condition -- 4.8 Application of microbial consortium in agriculture -- 4.8.1 Nutrient mobilization and management of soil by the rhizospheric microbes -- 4.8.2 Biostimulants -- 4.9 Conclusion and future scope -- References -- 5 Revisiting soil-plant-microbes interactions: Key factors for soil health and productivity -- 5.1 Introduction -- 5.2 Important types of plant-microbes interactions -- 5.2.1 Mutualisms -- 5.2.1.1 Rhizobia-legume mutualism -- 5.2.1.2 Actinorhizal associations -- 5.2.1.3 Plant-cyanobacterial mutualisms -- 5.2.2 Mycorrhizae -- 5.2.2.1 Arbuscular mycorrhizae -- 5.2.2.2 Ectomycorrhizae, ectendomycorrhizae, and arbutoid mycorrhizae -- 5.2.2.3 Ericoid mycorrhizae -- 5.2.2.4 Orchid and monotropoid mycorrhizae -- 5.3 Major pathways of improved soil health and productivity attributed by different plant-microbe interactions -- 5.3.1 Mineral acquisition -- 5.3.2 Biocontrol agent -- 5.3.3 Extenuating abiotic stresses -- 5.3.4 Improved physiochemical nature of soil -- 5.3.5 Phytostimulation -- 5.3.6 Rhizoremediation -- 5.4 Biofertilizers -- 5.5 Outlook and conclusion -- References -- 6 Biological control of forest pathogens: Success stories and challenges. , 6.1 Introduction -- 6.2 The importance of forest pathogens -- 6.3 Biological control: A brief exposition -- 6.3.1 Why adopt biological control? -- 6.3.2 Types of interactions contributing to biological control -- 6.3.3 Mechanisms of biocontrol -- 6.3.3.1 Direct mechanisms: Disease biocontrol is based primarily on three mechanisms -- Parasitism -- Antibiosis -- Competition -- 6.3.3.2 Indirect mechanisms of biocontrol -- 6.4 Success stories of biological control with special reference to Heterobasidion annosum -- 6.5 Challenges -- 6.5.1 Spectrum of specificity -- 6.5.2 Risk of introduction into new habitats -- 6.5.3 Sensitivity of biocontrol agents to stresses -- 6.5.4 Laborious laboratory screening and field screening of BCAs -- 6.5.5 Paucity of funding and poor policy support -- 6.5.6 Complex anatomy -- 6.5.7 Potential to become human pathogens -- 6.5.8 Nagoya protocol -- 6.5.9 Fluctuating trends -- 6.6 Future directions -- 6.7 Conclusion -- References -- 7 Cold-tolerant and cold-loving microorganisms and their applications -- 7.1 Introduction -- 7.2 Diversity of cold-tolerant mutants in cold ecosystems -- 7.3 Mechanisms of cold tolerance in microorganisms -- 7.3.1 Cell membrane response -- 7.3.2 Cryoprotectants -- 7.3.3 Antifreeze proteins -- 7.3.4 Cold acclimation proteins and cold shock response -- 7.3.5 RNA degradosome -- 7.4 Aspects of cold-tolerant enzymes -- 7.4.1 Industrial and medical aspects -- 7.4.2 Environmental aspects -- 7.4.3 Agricultural aspects -- 7.4.3.1 Plant growth-promoting microbes -- 7.4.3.2 Isolation of psychrophilic PGP microbes -- 7.4.3.3 Identification of psychrophilic PGP microbes -- 7.4.3.4 Characterization of psychrophilic PGP microbes -- 7.4.3.5 Selection of psychrophilic PGP microbes -- 7.4.3.6 Formulation of psychrophilic microbes as biofertilizers -- 7.5 Future prospects. , References -- 8 Plant growth-promoting diazotrophs: Current research and advancements -- 8.1 Introduction -- 8.2 Nitrogen fixation in diazotrophs -- 8.3 Terrestrial nitrogen-fixing diazotrophs -- 8.4 Nitrogen fixation in the ocean -- 8.5 Genomic and transcriptomics of diazotrophs -- 8.6 Beneficial mechanisms other than N-fixation provided by diazotrophs -- 8.7 Application in global agriculture -- 8.8 Future challenges in agriculture: Application of diazotrophs to nonlegumes -- 8.9 Conclusions and future perspectives -- References -- 9 Role of mycorrhizae in plant-parasitic nematodes management -- 9.1 Introduction -- 9.2 Role of arbuscular mycorrhiza in the suppression of plant-parasitic nematodes -- 9.3 Interaction of arbuscular mycorrhiza with soil-borne nematodes associated with plants -- 9.4 Mycorrhizal mode of action to manage plant-parasitic nematode -- 9.4.1 Physical interferences -- 9.4.1.1 Alteration in root and root-associated tissues morphology -- 9.4.2 Biochemical and physiological disturbances -- 9.4.2.1 Availability of nutrients -- 9.4.2.2 Struggle for plant photosynthates and place for infection -- 9.4.2.3 Alteration in biochemical and chemical composition of root tissues -- 9.4.3 Alteration in microflora of mycorrhizal rhizosphere -- 9.5 Mycorrhizal approaches for the management of plant pathogens -- 9.5.1 AMF integration with other approaches -- 9.5.2 Host-symbiont-soil nutrient status -- 9.5.3 Initial inoculum density and inoculations sequence of pathogen and symbionts -- 9.6 Production and commercialization of AMF -- 9.6.1 Conventional methods -- 9.6.2 In vitro/axenic cultivation of AM fungi (root organ culture) -- 9.7 Conclusion -- References -- 10 Plant growth-promoting and biocontrol potency of rhizospheric bacteria associated with halophytes -- 10.1 Introduction. , 10.2 Plant-microbe interactions and mitigation of abiotic stress -- 10.2.1 Plant growth-promoting rhizospheric bacteria (PGPR) and their activities -- 10.2.2 Current scenario of soil salinity -- 10.2.3 Effect of salt stress on the plant growth -- 10.2.4 Mechanisms of halotolerant bacteria -- 10.2.5 Analysis of PGP traits and biocontrol activity of halophytes -- 10.2.6 Experimental outcomes -- 10.3 Concluding remarks and future prospects -- Acknowledgments -- References -- 11 Nanotechnology for plant growth promotion and stress management -- 11.1 Introduction -- 11.2 Synthesis, absorption, and translocation of nanoparticles in plants -- 11.3 Nanoparticles in plant growth and stress tolerance -- 11.4 Green nanoparticle -- 11.5 Genetic engineering in nanoparticle -- 11.6 Conclusion -- References -- 12 Role of microbial biotechnology for strain improvement for agricultural sustainability -- 12.1 Introduction -- 12.2 Microbial inoculants in agriculture for sustainability -- 12.2.1 Microbial inoculants as biofertilizers -- 12.2.1.1 Plant-growth-promoting rhizobacteria (PGPR) -- 12.2.1.2 Role of PGPR in plant growth and development -- 12.2.2 Microbial inoculants as biocontrol agents -- 12.2.3 Different microbial groups in soil ecosystem -- 12.2.3.1 Rhizobia -- 12.2.3.2 Mycorrhizal fungi -- 12.2.3.3 Endophytic fungi -- 12.2.3.4 Rhizospheric fungi -- 12.2.3.5 Entomopathogenic and mycoparasitic fungi -- 12.2.4 Microbial inoculants for biotic and abiotic stress tolerance -- 12.2.4.1 Mitigation of drought stress -- 12.2.4.2 Salinity stress mitigation -- 12.2.4.3 Mitigation of heavy metals stress -- 12.2.4.4 Mitigation of heat stress -- 12.2.4.5 Combating elevated carbon dioxide -- 12.3 Microbial biotechnology for sustainable agriculture -- 12.3.1 Strain improvement -- 12.3.2 Selection from naturally occurring variants. , 12.3.3 Manipulation of the genome of organisms.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Microbiology. ; Ecology . ; Microbial ecology. ; Physiology.
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Cyanobacteria in cold ecosystem: tolerance and adaptation -- Chapter 2. Cold adapted fungi: evaluation and comparison of their habitats, molecular adaptations and industrial applications -- Chapter 3. Microbial life in cold regions of deep sea -- Chapter 4. Adaptation to cold environment: the survival strategy of psychrophiles -- Chapter 5. Enzymatic behavior of cold adapted microbes -- Chapter 6. An overview of survival strategies of Psychrophiles and their applications -- Chapter 7. Microbial genes responsible for cold adaptation -- Chapter 8. Survival Strategies in Cold-adapted Microorganisms -- Chapter 9. Microbial adaptations under low temperature -- Chapter 10. Molecular mechanisms of cold adapted microorganisms -- Chapter 11. Microbe-mediated plant functional traits and stress tolerance: The multi-Omics approaches -- Chapter 12. Omics technologies and cold adaptations -- Chapter 13. Use of proteomics and transcriptomics to identify proteins for cold adaptation in microbes -- Chapter 14. Cold adapted microorganisms and their potential role in plant growth -- Chapter 15. Structure and functions of rice and wheat microbiome -- Chapter 16. Cold adapted microorganisms: survival strategies and biotechnological significance -- Chapter 17. An insight to cold adapted microorganisms and their importance in agriculture -- Chapter 18. Nanotechnology for agricultural and environmental sustainability -- Chapter 19. Recent trends and advancements for agro-environmental sustainability at higher altitudes.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(X, 435 p. 1 illus.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9789811626258
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature Switzerland | Cham : Imprint: Springer
    Schlagwort(e): Environmental management. ; Pollution. ; Sustainability. ; Biology. ; Refuse and refuse disposal.
    Beschreibung / Inhaltsverzeichnis: Synthetic plastic offers a wide range of utilities because of its physico-chemical properties, thus the demand for its commercial availability and generation of waste is inevitable. Although the scientists have proved over the years that plastics can be efficiently biodegraded by different potential microorganisms, this sustainable green technology is still in the cocoon phase and overlooked by the industry and government as well. Therefore, this book will showcase the cutting-edge microbial tools to mitigate the plastic waste sustainably in consideration of latest technologies and recent strategic advancements besides discussing the global plastic production and their impacts on environment. It will also provide the present status and future perspectives of the environmental clean-up technologies. Moreover, it is an effort to ascertain the potential areas for large-scale biodegradation or pilot scale or start-up ventures in the field of plastic remediation strategy.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VI, 420 p. 46 illus., 35 illus. in color.)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031556616
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...