GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-07-17
    Description: Part of the abstract: The Michelson Interferometer for Passive AtmosphericSounding (MIPAS), on-board the European ENVIronmentalSATellite (ENVISAT) launched on 1 March 2002,is a middle infrared Fourier Transform spectrometer measuringthe atmospheric emission spectrum in limb sounding geometry.The instrument is capable to retrieve the vertical distributionMIPAS data were re-processed by ESA using updated versions ofthe Instrument Processing Facility (IPF v4.61 and v4.62) andprovided a complete set of level-2 operational products (geolocatedvertical profiles of temperature and volume mixingratio of H2O, O3, HNO3, CH4, N2O and NO2). MIPAS operated in its standard observation mode for approximately two years, from July 2002 to March 2004. MIPAS data were re-processed by ESA using updated versions of the Instrument Processing Facility (IPF v4.61 and v4.62) and provided a complete set of level-2 operational products (geolocated vertical profiles of temperature and volume mixing ratio of H2O, O3, HNO3, CH4, N2O and NO2). MIPAS operated in its standard observation mode from July 2002 to March 2004, covering the altitude range from the mesosphere to the upper troposphere with relatively high vertical resolution (about 3 km in the stratosphere). In this paper, we report a detailed description of the validation of MIPAS-ENVISAT operational ozone data, that was based on the comparison between MIPAS v4.61 (and, to a lesser extent, v4.62) O3 VMR profilesand a comprehensive set of correlative data, including observations from ozone sondes, ground-based lidar, FTIR and microwave radiometers, remote-sensing and in situ instruments on-board stratospheric aircraft and balloons, concurrent satellite sensors and ozone fields assimilated by theEuropean Center for Medium-range Weather Forecasting. A clear indication of the validity of MIPAS O3 vertical profiles is obtained for most of the stratosphere, where the mean relative difference with the individual correlative data sets is always lower than ±10%. Furthermore, these differences always fall within the combined systematic error (from1 hPa to 50 hPa) and the standard deviation is fully consistent with the random error of the comparison (from 1 hPa to 3040 hPa).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: Previous studies have shown that observed large O3 loss rates in cold Arctic Januaries cannot be explained with current understanding of the loss processes, recommended reaction kinetics, and standard assumptions about total stratospheric chlorine and bromine. Studies based on data collected during recent field campaigns suggest faster rates of photolysis and thermal decomposition of ClOOCl and higher stratospheric bromine concentrations than previously assumed. We show that a model accounting for these kinetic changes and higher levels of BrO can largely resolve the January Arctic O3 loss problem and closely reproduces observed Arctic O3 loss while being consistent with observed levels of ClO and ClOOCl. The model also suggests that bromine catalysed O3 loss is more important relative to chlorine catalysed loss than previously thought.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...