GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Buch
    Buch
    Seattle, Wash. : Applied Physics Lab.
    Materialart: Buch
    Seiten: 180 S
    Sprache: Englisch
    Anmerkung: Washington, Univ., Diss., 2001
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-10
    Beschreibung: Highlights: • Mooring observations show the East Greenland Spill Jet to be ubiquitous. • It is fed by classical DSOW in Denmark Strait, shelf water, and Irminger Sea water. • Its transport is similar to the classical DSOW plume. • It is the origin of a large fraction of the water in the Labrador Sea Water density range. Abstract: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean׳s role in climate.
    Materialart: Article , PeerReviewed
    Format: text
    Format: video
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  (PhD/ Doctoral thesis), University of Washington, Washington, USA, 305 pp
    Publikationsdatum: 2019-04-29
    Beschreibung: The overflow of dense water from the Nordic Seas through the Denmark Strait is one of the primary sources of the deep water in the world’s oceans. In 1998, a rapid high-resolution survey on the F/S Poseidon with expendable profilers (XCP/XCTD) collected velocity, temperature, and salinity data from the region of the Denmark Strait sill to study the initial descent of the overflow into the deep North Atlantic. The major results from this and an earlier, more modest, survey in 1997 on the R/V Aranda, along with additional analysis of satellite and current meter data, can be summarized as follows: - The flow near the sill is characterized by a strongly barotropic structure associated with a nearly-vertical temperature front. As the denser water descends the Greenland slope, it develops the bottom-intensified structure characteristic of a gravity current. - Initial transport of sq 〉 27.8 water at the sill is measured by the synoptic sections to be 2.7 ± 0.6 Sv, essentially identical both in mean and variability to that measured in 1973 by a 5-week current meter array deployment. - Despite large spatial and temporal variability in velocity, thickness, and transport, the overflow’s pathway and descent with distance from the sill are remarkably steady. - Measurements of near-bottom shear stress (from logarithmic velocity fits) confirm the importance of bottom friction in controlling the rate of overflow descent. - Satellite sea-surface temperature images confirm the birth and downstream propagation of cyclonic eddies starting at approximately 125 km southwest of the sill. This same point is also marked by a change in the rate of overflow entrainment and a maximum in overflow speed. Σ The presence of subsurface eddies upstream of the appearance of the surface features suggests a geographical separation between the region of flow instability and the site of eddy generation and vortex stretching. These two distinct processes occur in the approach to the sill and over the steepest descent, respectively.
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 (7). pp. 1351-1364.
    Publikationsdatum: 2019-04-29
    Beschreibung: Bulk properties of the Denmark Strait overflow (DSO) plume observed in velocity and hydrography surveys undertaken in 1997 and 1998 are described. Despite the presence of considerable short-term variability, it is found that the pathway and evolution of the plume density anomaly are remarkably steady. Bottom stress measurements show that the pathway of the plume core matches well with a rate of descent controlled by friction. The estimated entrainment rate diagnosed from the rate of plume dilution with distance shows a marked increase in entrainment at approximately 125 km from the sill, leading to a net dilution consistent with previous reports of a doubling of overflow transport measured by current meter arrays. The entrainment rate increase is likely related to the increased topographic slopes in the region, compounded by a decrease in interface stratification as the plume is diluted and enters a denser background.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-03-10
    Beschreibung: A series of idealised numerical simulations of dense water flowing down a broad uniform slope are presented, employing both a z-coordinate model (the MIT general circulation model) and an isopycnal coordinate model (the Hallberg Isopycnal Model). Calculations are carried out at several different horizontal and vertical resolutions, and for a range of physical parameters. A subset of calculations are carried out at very high resolution using the non-hydrostatic variant of the MITgcm. In all calculations dense water descends the slope while entraining and mixing with ambient fluid. The dependence of entrainment, mixing and down-slope descent on resolution and vertical coordinate are assessed. At very coarse resolutions the z-coordinate model generates excessive spurious mixing, and dense water has difficulty descending the slope. However, at intermediate resolutions the mixing in the z-coordinate model is less than found in the high-resolution non-hydrostatic simulations, and dense water descends further down the slope. Isopycnal calculations show less resolution dependence, although entrainment and mixing are both reduced slightly at coarser resolution. At intermediate resolutions the z-coordinate and isopycnal models produce similar levels of mixing and entrainment. These results provide a benchmark against which future developments in overflow entrainment parameterizations in both z-coordinate and isopycnal models may be compared.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  EPIC3Journal of Physical Oceanography, 47(3), pp. 567-582, ISSN: 0022-3670
    Publikationsdatum: 2017-03-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part I-Oceanographic Research Papers, PERGAMON-ELSEVIER SCIENCE LTD, 92, pp. 75-84, ISSN: 0967-0637
    Publikationsdatum: 2014-08-18
    Beschreibung: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean's role in climate.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 92 (2014): 75-84, doi:10.1016/j.dsr.2014.06.002.
    Beschreibung: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean’s role in climate.
    Beschreibung: Support for this study was provided by the U.S. National Science Foundation (OCE-0726640, OCI-1088849, OCI-0904338), the German Federal Ministry of Education and Research (0F0651 D), and the Italian Ministry of University and Research through the RITMARE Flagship Project.
    Schlagwort(e): East Greenland Spill Jet ; Denmark Strait Overflow Water ; Atlantic meridional overturning circulation ; Shelf basin interaction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    American Geophysical Union
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C01002, doi:10.1029/2005JC003139.
    Beschreibung: This study examines water property distributions in the deep South China Sea and adjoining Pacific Ocean using all available hydrographic data. Our analysis reveals that below about 1500 m there is a persistent baroclinic pressure gradient driving flow from the Pacific into the South China Sea through Luzon Strait. Applying hydraulic theory with assumptions of zero potential vorticity and flat bottom to the Luzon Strait yields a transport estimate of 2.5 Sv (1 Sv=106 m3 s-1). Some implications of this result include: (i) a residence time of less than 30 years in the deep South China Sea, (ii) a mean diapycnal diffusivity as large as 10-3 m2 s-1, and (iii) an abyssal upwelling rate of about 3×10-6 m s-1. These quantities are consistent with residence times based on oxygen consumption rates. The fact that all of the inflowing water must warm up before leaving the basin implies that this marginal sea contributes to the water mass transformations that drive the meridional overturning circulation in the North Pacific. Density distributions within the South China Sea basin suggest a cyclonic deep boundary current system, as might be expected for an overflow-driven abyssal circulation.
    Beschreibung: This study was supported by National Science Foundation (NSF) through Grant OCE00-95906 and by Japan Marine Science and Technology Center through its sponsorship of the International Pacific Research center (IPRRC). Support is also from NSF grant OCE-0325102.
    Schlagwort(e): Deepwater overflow ; South China Sea ; Pacific Ocean ; Luzon Strait
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2340-2349, doi:10.1175/JPO2969.1.
    Beschreibung: The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control—primarily an asymmetry across the sill reminiscent of flow over a dam. However, this aspect has never been confirmed by any quantitative measure, nor is the position of the control section known. This paper presents a comparison of several different techniques for assessing the hydraulic criticality of oceanic overflows applied to data from a set of velocity and hydrographic sections across the FBC. These include 1) the cross-stream variation in the local Froude number, including a modified form that accounts for stratification and vertical shear, 2) rotating hydraulic solutions using a constant potential vorticity layer in a channel of parabolic cross section, and 3) direct computation of shallow water wave speeds from the observed overflow structure. Though differences exist, the three methods give similar answers, suggesting that the FBC is indeed controlled, with a critical section located 20–90 km downstream of the sill crest. Evidence of an upstream control with respect to a potential vorticity wave is also presented. The implications of these results for hydraulic predictions of overflow transport and variability are discussed.
    Beschreibung: The Faroe Bank Channel experiment was supported by NSF Grant OCE-9906736. JBG gratefully acknowledges the support of the NOAA/ UCAR Climate and Global Change Postdoctoral Program and NSF Grant OCE-9985840. Author Price was supported in part by the U.S. Office of Naval Research through Grant N00014-04-1-0109.
    Schlagwort(e): Deep water ; Dynamics ; Water masses
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...